Reed-Solomon Proximity Testing with Fewer Queries

Gal Arnon

Alessandro Chiesa

Giacomo Fenzi

Notivation

STARKs & Friends

- **IOP**-based SNARKs instantiated using the BCS transformation
- Secure in the ROM: can be instantiated with only hash-functions
- Transparent (public-coin) setup
- Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

S Succinct

zkVMs:

RS Codes and IOPPs Field Domain $\hat{p} \in \mathbb{F}^{< d}[X]$ Enc $f: L \to \mathbb{F}$ with $\hat{p}|_L \equiv f$

Rate: $\rho = d/|L|$, think $\rho = 1/4$ $L \operatorname{smooth} \Longrightarrow \operatorname{Enc} \operatorname{is} \operatorname{an} \operatorname{FFT}$

- $f \in \mathsf{RS}[\mathbb{F}, L, d] \implies \mathsf{V}$ accepts
- $f \text{ is } \delta \text{-far from } \mathsf{RS}[\mathbb{F}, L, d] \implies$ V rejects w.h.p.

V makes "few queries" to f and proof oracles

Smooth structure allows to check consistency in a single query-phase at the end

Queries:

(To get λ -bits of security, without conjecture)

round-by-round

In this talk: $L^k = \{x^k : x \in L\}$

 g_1 is supposed to be the folding of f around α_1

Recursively test the claim that $g_i \in \mathsf{RS}[\mathbb{F}, L^{k^i}, d/k^i]$

Rounds: $O(\log d)$ **Proof length**: O(|L|)

$$O\left(\lambda \cdot \frac{\log d}{-\log \sqrt{\rho}}\right) \text{ for } \delta = 1 - \sqrt{\rho}$$

Our results

Rounds: $O(\log d)$

Queries:

$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log \sqrt{\rho}}\right) + \log d\right) \quad \text{ for } \delta = 1 - \sqrt{\rho}$$

(To get λ -bits of security, without conjecture)

round-by-round

An IOPP for RS with

Proof length: O(|L|)

Comparison to FRI

- **Drop-in** replacement of FRI
- Fewer queries leads to:
 - Fewer authentication paths \implies smaller argument size
- Rough query comparison:

 - FRI: ~ 400 queries vs STIR: ~ 200 queries

FRI:
$$O\left(\lambda \cdot \frac{\log d}{-\log \sqrt{\rho}}\right)$$

STIR: $O\left(\lambda \cdot \log\left(\frac{\log d}{-\log \sqrt{\rho}}\right) + \log d\right)$

• Smaller verifier hash-complexity \implies faster and more recursion-friendly!

• Example parameters: $\rho = 1/4$, $\delta = 1 - \sqrt{\rho}$, targeting 100-bits of security

can increase by PoW

Implementation

- Rust <a>implementation, available at <a>WizardOfMenlo/stir
- Implemented both FRI and STIR
- Modular over choice of:
 - Field
 - Fiat-Shamir hash
 - Merkle hash
- Decently well written (for academia!

<u>Arkworks</u> as backend, 192-bit field for benchmarks, reasonably optimised

```
pub trait LowDegreeTest<F, MerkleConfig, FSConfig>
where
   F: FftField,
   MerkleConfig: Config,
   FSConfig: CryptographicSponge,
   FSConfig::Config: Clone,
   type Prover: Prover<</pre>
       F,
       MerkleConfig,
       FSConfig,
       Commitment = <Self::Verifier as Verifier<F, MerkleConfig, FSConfig>>::Commitment,
       Proof = <Self::Verifier as Verifier<F, MerkleConfig, FSConfig>>::Proof,
   >;
   type Verifier: Verifier<F, MerkleConfig, FSConfig>;
   fn instantiate(
       parameters: Parameters<F, MerkleConfig, FSConfig>,
   ) -> (Self::Prover, Self::Verifier) {
       let prover = Self::Prover::new(parameters.clone());
       let verifier = Self::Verifier::new(parameters);
       (prover, verifier)
```


Results

- every degree-rate pair benchmarked!
- Larger improvements when degree and rate increase

$d = 2^{24}, \rho = 1/4$	FRI	STIR	$ \begin{array}{c} 5 \\ \hline 9 \\ $
Size (KiB)	177	107	Size (K)
Hashes	3.5k	1.8k	1
$d = 2^{30}, \rho = 1/2$	FRI	STIR	2
$d = 2^{30}, \rho = 1/2$ Size (KiB)	FRI 494	STIR 200	Time (s) 5

Compared to FRI: better argument size and verifier hash complexity across

Main Idea: Shift-To-Improve-Rate A smaller rate makes the code easier to test

- A STIR iteration reduces testing proximity to $C = \mathsf{RS}[\mathbb{F}, L, d]$ to testing proximity to $C' = \mathsf{RS}[\mathbb{F}, L', d/k]$ where |L'| = |L|/2.
- easier to test).
- unless with probability $(1 \delta)^t$ where t is number of queries.
- Round-by-round errors roughly as below so can set:

$$(1 - \delta)^{t_0}, \rho_1^{\frac{t_1}{2}}, \dots, \rho_M^{\frac{t_M}{2}}$$

• New rate is $\rho' = (2/k) \cdot \rho$, if k > 2 the rate **improves**! (i.e. the new code is

• We also **amplify distance**. If f is δ -far then f' is $(1 - \sqrt{\rho'})$ -far to the new code

Folding Reduce $RS[\mathbb{F}, L, d]$ to $RS[\mathbb{F}, L^k, d/k]$

Local

By querying *f* at *k* locations, V can compute Fold(*f*, *k*, α) at $z \in L^k$

Selecting α defines a function Fold(*f*, *k*, α)

Distance Preserving

f is δ -far from RS

w.h.p. over α

Fold is δ -far from RS

Quotienting Enforce constraints on *f* or amplify distance

Let $f: L \to \mathbb{F}$ be a function and Ans $: S \to \mathbb{F}$ be a list of (claimed) evaluations of (the extension of) f on S

Local

V can compute Quotient(f, Ans) at $x \in L - S$ by querying f at x

Quotient(f, Ans)(x) := $\frac{f(x) - A\hat{n}s(x)}{V_S(x)}$

Consistency

If every $\hat{v} \in \text{List}(f, d, \delta)$ has $\hat{v}|_{S} \not\equiv \text{Ans then}$ Quotient(*f*, Ans) is δ -far from RS

Out Of Domain sampling Move to unique decoding range

By fundamental theorem of algebra there is at most **one** $\hat{u} \in \text{List}(g, d, \delta)$ such that $\hat{u}(\alpha) = \beta$, w.h.p.

Use $Quotient(g, \alpha \mapsto \beta)$ to enforce the constraint

STIR iteration

g is *claimed* to be equal to (the extension of) Fold(f, k, α) on L'

Problem: We can only query Fold(f, k, α) on $L^k \neq L'$.

Enforce consistency via Quotient!

Query Fold(f, k, α) at $x_1, \ldots, x_t \in L^k$ to get $y_1, ..., y_t$

New function is quotient of g w.r.t. to these points + OOD sample

Soundness Analysis

Claim: if f is δ -far from C, unless with probability $\approx (1 - \delta)^t$, f' is $(1 - \sqrt{\rho'})$ far from C'

 \hat{v} is **unique** close codeword to g with $\hat{v}(x_0) = y_0$

If at any point $\hat{v}(x_i) \neq y_i$ then, by quotients, f' is $(1 - \sqrt{\rho'})$ -far from C'

Since Fold is δ -far from the code, $\Delta(\hat{v}|_{I^k}, \operatorname{Fold}(f, k, \alpha)) > \delta$

Pr f' is $1 - \sqrt{\rho'}$ close $\leq \Pr \left| \forall i, \hat{v}(x_i) = y_i \right|$ $= \Pr\left[\forall i, \, \hat{v}(x_i) = \mathsf{Fold}(f, k, \alpha)(x_i)\right]$ $\leq (1-\delta)^t$

Conclusion

What we saw What we did have time to talk about

- Techniques
 - Folding and its properties
 - Quotienting and its properties
 - Out-Of-Domain sampling
- STIR 🥣
- Soundness analysis of STIR

There is more! What we did not have time to talk about

Degree corrections

• Quotient(f, Ans) has degree d - |S|, how to bump up to d?

High-soundness compiler for Poly-IOPs

Builds on compiler in [ACY23] to achieve concrete efficiency

Round-by-round soundness of STIR \implies secure in non-interactive setting

W

W

- Breaking the $O(\log d)$ -qu
 - Work in [ACY23] achieves O(log log
 - Not concretely efficient, lacks efficient sound
 - Exciting!!!

time to talk about next talk!

wid, Shahar $\overline{00}$

See paper: ia.cr/2024/390

And blog post: gfenzi.io/papers/stir

Extra sides

What about the conjecture? FRI and STIR benefit in roughly the same way

- Conjecture on list-decoding up to distance 1ρ (instead of $1 \sqrt{\rho}$)
- FRI queries:

 $O\left(\lambda \cdot \frac{\log d}{-\log \rho}\right)$

• STIR queries:

In both, for $\delta = 1 - \rho$, reduces queries by ~2x

$$O\left(\lambda \cdot \log\left(\frac{\log d}{-\log \rho}\right) + \log d\right)$$