
STIR 🥣
Reed-Solomon Proximity Testing with Fewer Queries

1

Giacomo FenziGal Arnon

Alessandro Chiesa Eylon Yogev

Motivation
2

STARKs & Friends
• IOP-based SNARKs instantiated using the BCS transformation

• Secure in the ROM: can be instantiated with only hash-functions

• Transparent (public-coin) setup

• Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

Rollups:

zkVMs: And more…
3

Anatomy of an IOP-based SNARK
Reducing to low-degree testing

Arithmetization

R1CS/AIR/Plonkish/CCS…

Poly IOP
Reed-Solomon (RS)

Encoding

+
Poly IOP

Aurora/Plonky/STARK

P V

f : L → 𝔽

 needs to test is
close to a low-degree

function

V f
FRI

BCS
transformation

STARK

 80% of the
argument size!
≳

4

Background

RS Codes and IOPPs

𝖱𝖲[𝔽, L, d]

̂p ∈ 𝔽<d[X]

Field Evaluation
Domain

Degree

 with f : L → 𝔽 ̂p |L ≡ f

𝖤𝗇𝖼

Rate: , think

 smooth is an FFT

ρ = d/ |L | ρ = 1/4

L ⟹ 𝖤𝗇𝖼

P V
f : L → 𝔽

IOPP for RS

• accepts

• is -far from
 rejects w.h.p.

 makes “few queries” to and proof oracles

f ∈ 𝖱𝖲[𝔽, L, d] ⟹ V

f δ 𝖱𝖲[𝔽, L, d] ⟹
V

V f
6

FRI Protocol

P V

f : L → 𝔽

g1 : Lk → 𝔽

α1

g2 : Lk2 → 𝔽

α2

⋮
̂p ∈ 𝔽<dM[X]

 is supposed to be the folding of around

Recursively test the claim that

Smooth structure allows to check consistency in a
single query-phase at the end

g1 f α1

gi ∈ 𝖱𝖲[𝔽, Lki, d/ki]

Rounds: O(log d) Proof length: O(|L |)

Queries: for

(To get -bits of security, without conjecture)

O (λ ⋅
log d

−log ρ) δ = 1 − ρ

λ
round-by-round

7In this talk: Lk = {xk : x ∈ L}

Our results
8

STIR 🥣

Rounds: O(log d) Proof length: O(|L |)

Queries:

(To get -bits of security, without conjecture)

O (λ ⋅ log (log d
−log ρ)+log d)

λ

An IOPP for RS with

round-by-round
9

for δ = 1 − ρ

Comparison to FRI
• Drop-in replacement of FRI

• Fewer queries leads to:

• Fewer authentication paths smaller argument size

• Smaller verifier hash-complexity faster and more recursion-friendly!

• Rough query comparison:

• Example parameters: , , targeting 100-bits of security

• FRI: ~ 400 queries vs STIR: ~ 200 queries

⟹

⟹

ρ = 1/4 δ = 1 − ρ

O (λ ⋅
log d

−log ρ)
O λ ⋅ log (log d

−log ρ)+log d

FRI:

STIR:

10

can increase by PoW

Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/stir

• Arkworks as backend, 192-bit field for benchmarks, reasonably optimised

• Implemented both FRI and STIR

• Modular over choice of:

• Field

• Fiat-Shamir hash

• Merkle hash

• Decently well written (for academia! 📚)

11

https://github.com/WizardOfMenlo/stir/
http://arkworks.rs

Results
• Compared to FRI: better argument size and verifier hash complexity across

every degree-rate pair benchmarked!

• Larger improvements when degree and rate increase

FRI STIR

Size (KiB) 177 107

Hashes 3.5k 1.8k

d = 224, ρ = 1/4

FRI STIR

Size (KiB) 494 200

Hashes 10k 3.8k

d = 230, ρ = 1/2

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

2

3

4

5

6

T
im

e
(m

s)

Verifier time

ρ = 1/2

12

Techniques
13

Main Idea: Shift-To-Improve-Rate
A smaller rate makes the code easier to test

• A STIR iteration reduces testing proximity to to testing
proximity to where .

• New rate is , if the rate improves! (i.e. the new code is
easier to test).

• We also amplify distance. If is -far then is -far to the new code
unless with probability where is number of queries.

• Round-by-round errors roughly as below so can set:

C = 𝖱𝖲[𝔽, L, d]
C′ = 𝖱𝖲[𝔽, L′ , d/k] |L′ | = |L | /2

ρ′ = (2/k) ⋅ ρ k > 2

f δ f′ (1 − ρ′)
(1 − δ)t t

(1 − δ)t0, ρ
t1
2

1 , …, ρ
tM
2

M t0 =
λ

−log(1 − δ)
ti =

λ
−log(ρi)

Less queries
each round!

14

Reduce to 𝖱𝖲[𝔽, L, d] 𝖱𝖲[𝔽, Lk, d/k]

f : L → 𝔽P V α ← 𝔽

Folding

Local
Distance Preserving

By querying at locations, can
compute at

f k V
𝖥𝗈𝗅𝖽(f, k, α) z ∈ Lk f is -far from f δ 𝖱𝖲

𝖥𝗈𝗅𝖽(f, k, α) is -far from 𝖥𝗈𝗅𝖽 δ 𝖱𝖲

w.h.p. over α

15

𝖥𝗈𝗅𝖽(f, k, α)

f : L → 𝔽

query

Selecting
defines a function

α

𝖥𝗈𝗅𝖽(f, k, α)

Quotienting
Enforce constraints on or amplify distancef

Let be a function
and be a list of
(claimed) evaluations of (the
extension of) on

f : L → 𝔽
𝖠𝗇𝗌 : S → 𝔽

f S
𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(f, 𝖠𝗇𝗌)(x) :=

f(x) − 𝖠�̂�𝗌(x)
VS(x)

Local
 can compute

 at
by querying at

V
𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(f, 𝖠𝗇𝗌) x ∈ L − S

f x

Consistency

f δ
If every
has then

 is -far
from

̂v ∈ 𝖫𝗂𝗌𝗍(f, d, δ)
̂v |S ≢ 𝖠𝗇𝗌

𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(f, 𝖠𝗇𝗌) δ
𝖱𝖲

16

Out Of Domain sampling
Move to unique decoding range

P V
g : L → 𝔽

gα ← 𝔽 ∖ L

β ∈ 𝔽
δ

𝖫𝗂𝗌𝗍(g, d, δ)

By fundamental theorem of
algebra there is at most one

 such that
, w.h.p.

̂u ∈ 𝖫𝗂𝗌𝗍(g, d, δ)
̂u(α) = β

Use to enforce the constraint 𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(g, α ↦ β) 17

STIR iteration P Vf : L → 𝔽

g : L′ → 𝔽
 is claimed to be equal to (the

extension of) on
g

𝖥𝗈𝗅𝖽(f, k, α) L′

Query at
to get

𝖥𝗈𝗅𝖽(f, k, α) x1, …, xt ∈ Lk

y1, …, yt

Problem: We can only query
 on .

Enforce consistency via !

𝖥𝗈𝗅𝖽(f, k, α) Lk ≠ L′

𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍

Test f′

New function is quotient of w.r.t. to
these points + OOD sample

g

α α ← 𝔽

x0

y0

x0 ← 𝔽 ∖ L′

x1, …, xt

∀ i : 𝖠𝗇𝗌(xi) = yi

f′ := 𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(g, 𝖠𝗇𝗌) yi = 𝖥𝗈𝗅𝖽(f, k, α)(xi)
Query to get f

x1, …, xt ← Lk

18

Soundness Analysis
Claim: if is -far from , unless with probability

, is far from
f δ C

≈ (1 − δ)t f′ (1 − ρ′) C′

 is unique close codeword to
with
̂v g

̂v(x0) = y0

Since is -far from the code,𝖥𝗈𝗅𝖽 δ
Δ(̂v |Lk , 𝖥𝗈𝗅𝖽(f, k, α)) > δ

If at any point then, by
quotients, is -far from

̂v(xi) ≠ yi
f′ (1 − ρ′) C′

Pr [f′ is 1 − ρ′ close]
≤ Pr [∀i, ̂v(xi) = yi]
= Pr [∀i, ̂v(xi) = 𝖥𝗈𝗅𝖽(f, k, α)(xi)]
≤ (1 − δ)t

g
1 − ρ′

OOD

̂vx0

̂v |Lk

Compare ↕ x1, …, xt

f

𝖥𝗈𝗅𝖽(f, k, α)
α

Folding

19

Conclusion
20

What we saw

• Techniques

• Folding and its properties

• Quotienting and its properties

• Out-Of-Domain sampling

• STIR 🥣

• Soundness analysis of STIR

What we did have time to talk about

21

g
1 − ρ′

̂v

f δ

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

2

3

4

5

6

T
im

e
(m

s)

Verifier time

ρ = 1/2

𝖥𝗈𝗅𝖽(f, k, α)

f : L → 𝔽

There is more!
What we did not have time to talk about

Degree corrections

• has degree , how to bump up to ?

High-soundness compiler for Poly-IOPs

• Builds on compiler in [ACY23] to achieve concrete efficiency

Round-by-round soundness of STIR secure in non-interactive setting

𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(f, 𝖠𝗇𝗌) d − |S | d

⟹

22

What’s next?
What we hope to have time to talk about next talk!

• Small fields:

• Circle-STIR? 🔵 🥣? Should be fine! (Ulrich, David, Shahar 👀)

• Basefold STIR? Binary-STIR? More unclear

• Breaking the -query barrier

• Work in [ACY23] achieves queries proximity tests

• Not concretely efficient, lacks efficient soundness amplification

• Exciting!!!

O(log d)

O(log log d)

23

USE STIR🥣!!!

Thank you!

24

See paper:
ia.cr/2024/390

And blog post:
gfenzi.io/papers/stir

https://ia.cr/2024/390
http://gfenzi.io/papers/stir

Extra slides
25

What about the conjecture?
FRI and STIR benefit in roughly the same way

• Conjecture on list-decoding up to distance (instead of)

• FRI queries:

• STIR queries:

1 − ρ 1 − ρ

O (λ ⋅
log d

−log ρ)

O (λ ⋅ log (log d
−log ρ)+log d)

In both, for ,

reduces queries by ~2x

δ = 1 − ρ

