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STARKs & Friends
• IOP-based SNARKs instantiated using the BCS transformation


• Secure in the ROM: can be instantiated with only hash-functions


• Transparent (public-coin) setup


• Fast proving, not tied to ECC fields, post quantum secure in QROM [CMS].

Rollups:

zkVMs: And more…
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Anatomy of an IOP-based SNARK
Reducing to low-degree testing

Arithmetization 

R1CS/AIR/Plonkish/CCS…

Poly IOP
Reed-Solomon (RS) 

Encoding

+
Poly IOP 

Aurora/Plonky/STARK

P V

f : L → 𝔽

 needs to test  is 
close to a low-degree 

function

V f
FRI

BCS 
transformation

STARK

 80% of the 
argument size!
≳
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Background



RS Codes and IOPPs

𝖱𝖲[𝔽, L, d]

̂p ∈ 𝔽<d[X]

Field Evaluation 
Domain

Degree

    with f : L → 𝔽 ̂p |L ≡ f

𝖤𝗇𝖼

Rate: , think 


 smooth  is an FFT

ρ = d/ |L | ρ = 1/4

L ⟹ 𝖤𝗇𝖼

P V
f : L → 𝔽

IOPP for RS

•   accepts


•  is -far from             
 rejects w.h.p.


 makes “few queries” to   and proof oracles

f ∈ 𝖱𝖲[𝔽, L, d] ⟹ V

f δ 𝖱𝖲[𝔽, L, d] ⟹
V

V f
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FRI Protocol

P V

f : L → 𝔽

g1 : Lk → 𝔽

α1

g2 : Lk2 → 𝔽

α2

⋮
̂p ∈ 𝔽<dM[X]

 is supposed to be the folding of  around 


Recursively test the claim that 


Smooth structure allows to check consistency in a 
single query-phase at the end

g1 f α1

gi ∈ 𝖱𝖲[𝔽, Lki, d/ki]

Rounds: O(log d) Proof length: O( |L | )

Queries:  for 


(To get -bits of security, without conjecture)

O (λ ⋅
log d

−log ρ ) δ = 1 − ρ

λ
round-by-round

7In this talk: Lk = {xk : x ∈ L}



Our results
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STIR 🥣

Rounds: O(log d) Proof length: O( |L | )

Queries: 





(To get -bits of security, without conjecture)

O (λ ⋅ log ( log d
−log ρ )+log d)

λ

An IOPP for RS with 

round-by-round
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Comparison to FRI
• Drop-in replacement of FRI


• Fewer queries leads to:


• Fewer authentication paths  smaller argument size


• Smaller verifier hash-complexity  faster and more recursion-friendly!


• Rough query comparison:


• Example parameters: , , targeting 100-bits of security


• FRI: ~ 400 queries vs STIR: ~ 200 queries

⟹

⟹

ρ = 1/4 δ = 1 − ρ

O (λ ⋅
log d

−log ρ )
O λ ⋅ log ( log d

−log ρ )+log d

FRI:

STIR:
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Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/stir 


• Arkworks as backend, 192-bit field for benchmarks, reasonably optimised


• Implemented both FRI and STIR


• Modular over choice of:


• Field


• Fiat-Shamir hash


• Merkle hash


• Decently well written (for academia! 📚)
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https://github.com/WizardOfMenlo/stir/
http://arkworks.rs


Results
• Compared to FRI: better argument size and verifier hash complexity across 

every degree-rate pair benchmarked!


• Larger improvements when degree and rate increase

FRI STIR

Size (KiB) 177 107

Hashes 3.5k 1.8k

d = 224, ρ = 1/4

FRI STIR

Size (KiB) 494 200

Hashes 10k 3.8k

d = 230, ρ = 1/2
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Techniques
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Main Idea: Shift-To-Improve-Rate
A smaller rate makes the code easier to test

• A STIR iteration reduces testing proximity to  to testing 
proximity to  where .


• New rate is , if  the rate improves! (i.e. the new  code is 
easier to test).


• We also amplify distance. If  is -far then  is -far to the new code 
unless with probability  where  is number of queries.


• Round-by-round errors roughly as below so can set:

C = 𝖱𝖲[𝔽, L, d]
C′ = 𝖱𝖲[𝔽, L′ , d/k] |L′ | = |L | /2

ρ′ = (2/k) ⋅ ρ k > 2

f δ f′ (1 − ρ′ )
(1 − δ)t t

(1 − δ)t0, ρ
t1
2

1 , …, ρ
tM
2

M t0 =
λ

−log(1 − δ)
ti =

λ
−log( ρi)

Less queries 
each round!
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Reduce  to 𝖱𝖲[𝔽, L, d] 𝖱𝖲[𝔽, Lk, d/k]

f : L → 𝔽P V α ← 𝔽

Folding

Local
Distance Preserving

By querying  at  locations,  can 
compute  at  

f k V
𝖥𝗈𝗅𝖽( f, k, α) z ∈ Lk f   is -far from f δ 𝖱𝖲

𝖥𝗈𝗅𝖽( f, k, α)   is -far from 𝖥𝗈𝗅𝖽 δ 𝖱𝖲

w.h.p. over α
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𝖥𝗈𝗅𝖽( f, k, α)

f : L → 𝔽

query

Selecting  
defines a function 

α

𝖥𝗈𝗅𝖽( f, k, α)



Quotienting
Enforce constraints on  or amplify distancef

Let  be a function 
and  be a list of 
(claimed) evaluations of (the 
extension of)  on 

f : L → 𝔽
𝖠𝗇𝗌 : S → 𝔽

f S
𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍( f, 𝖠𝗇𝗌)(x) :=

f(x) − 𝖠�̂�𝗌(x)
VS(x)

Local
 can compute 

 at  
by querying   at 

V
𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍( f, 𝖠𝗇𝗌) x ∈ L − S

f x

Consistency

f δ
If every  
has  then 

 is -far 
from 

̂v ∈ 𝖫𝗂𝗌𝗍( f, d, δ)
̂v |S ≢ 𝖠𝗇𝗌

𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍( f, 𝖠𝗇𝗌) δ
𝖱𝖲

16



Out Of Domain sampling
Move to unique decoding range

P V
g : L → 𝔽

gα ← 𝔽 ∖ L

β ∈ 𝔽
δ

𝖫𝗂𝗌𝗍(g, d, δ)

By fundamental theorem of 
algebra there is at most one 

 such that 
, w.h.p.

̂u ∈ 𝖫𝗂𝗌𝗍(g, d, δ)
̂u(α) = β

Use  to enforce the constraint 𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(g, α ↦ β) 17



STIR iteration P Vf : L → 𝔽

g : L′ → 𝔽
 is claimed to be equal to (the 

extension of)  on 
g

𝖥𝗈𝗅𝖽( f, k, α) L′ 

Query  at  
to get 

𝖥𝗈𝗅𝖽( f, k, α) x1, …, xt ∈ Lk

y1, …, yt

Problem: We can only query  
 on .


Enforce consistency via !

𝖥𝗈𝗅𝖽( f, k, α) Lk ≠ L′ 

𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍

Test f′ 

New function is quotient of  w.r.t. to 
these points + OOD sample

g

α α ← 𝔽

x0

y0

x0 ← 𝔽 ∖ L′ 

x1, …, xt

∀ i : 𝖠𝗇𝗌(xi) = yi

f′ := 𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍(g, 𝖠𝗇𝗌) yi = 𝖥𝗈𝗅𝖽( f, k, α)(xi)
Query  to get f

x1, …, xt ← Lk
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Soundness Analysis
Claim: if  is -far from , unless with probability 

,  is  far from 
f δ C

≈ (1 − δ)t f′ (1 − ρ′ ) C′ 

 is unique close codeword to  
with 
̂v g

̂v(x0) = y0

Since  is -far from the code,𝖥𝗈𝗅𝖽 δ
Δ( ̂v |Lk , 𝖥𝗈𝗅𝖽( f, k, α)) > δ

If at any point  then, by 
quotients,  is -far from 

̂v(xi) ≠ yi
f′ (1 − ρ′ ) C′ 

Pr [f′  is 1 − ρ′  close ]
≤ Pr [∀i, ̂v(xi) = yi]
= Pr [∀i, ̂v(xi) = 𝖥𝗈𝗅𝖽( f, k, α)(xi)]
≤ (1 − δ)t

g
1 − ρ′ 

OOD

̂vx0

̂v |Lk

Compare ↕ x1, …, xt

f

𝖥𝗈𝗅𝖽( f, k, α)
α

Folding
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Conclusion
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What we saw

• Techniques


• Folding and its properties


• Quotienting and its properties


• Out-Of-Domain sampling


• STIR 🥣


• Soundness analysis of STIR

What we did have time to talk about

21

g
1 − ρ′ 

̂v

f δ

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

2

3

4

5

6

T
im

e
(m

s)

Verifier time

ρ = 1/2

𝖥𝗈𝗅𝖽( f, k, α)

f : L → 𝔽



There is more!
What we did not have time to talk about

Degree corrections


•  has degree , how to bump up to ?


High-soundness compiler for Poly-IOPs


• Builds on compiler in [ACY23] to achieve concrete efficiency


Round-by-round soundness of STIR  secure in non-interactive setting

𝖰𝗎𝗈𝗍𝗂𝖾𝗇𝗍( f, 𝖠𝗇𝗌) d − |S | d

⟹
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What’s next?
What we hope to have time to talk about next talk!

• Small fields:


• Circle-STIR? 🔵 🥣? Should be fine! (Ulrich, David, Shahar 👀)


• Basefold STIR? Binary-STIR? More unclear


• Breaking the -query barrier 

• Work in [ACY23] achieves  queries proximity tests


• Not concretely efficient, lacks efficient soundness amplification


• Exciting!!!

O(log d)

O(log log d)
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USE STIR🥣!!!



Thank you!
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See paper: 
ia.cr/2024/390 

And blog post: 
gfenzi.io/papers/stir 

https://ia.cr/2024/390
http://gfenzi.io/papers/stir


Extra slides
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What about the conjecture?
FRI and STIR benefit in roughly the same way

• Conjecture on list-decoding up to distance  (instead of )


• FRI queries:


• STIR queries:

1 − ρ 1 − ρ

O (λ ⋅
log d

−log ρ )

O (λ ⋅ log ( log d
−log ρ )+log d)

In both, for ,


reduces queries by ~2x

δ = 1 − ρ


