SLAP

Succinct Lattice-Based Polynomial Commitment

 Schemes from Standard Assumptions
Giacomo Fenzi @ EPFL

Joint work with:
Martin Albrecht
Ngoc Khanh Nguyen
Oleksandra Lapiha

Motivation

SNARKs

(Succinct Non-Interactive ARguments of Knowledge)

Complete: if $(x, w) \in R, \mathbf{V}$ accepts.
Non-interactive: \mathbf{P} sends a single message.
Succinct: $\pi \ll w$ and verifier is fast.

Knowledge Sound: if $\mathbf{V}(x, \pi)=1$, can extract w such that $(x, w) \in R$

Constructing SNARKs

The modular way ${ }^{\text {™ }}$

We focus on this!

- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Cryptography goes here!
- Computational security
- We can achieve succinctness
- Verifiers are very efficient

Zoo of Polynomial Commitments

A very incomplete list...

Underlined: succinct verification
*: interactive (no FS)
(T): trusted setup

Our Results

SLAP: Succinct Lattice-Based Polynomial Commitments from
 Standard Assumptions

Martin R. Albrecht
martin.albrecht@\{kcl.ac.uk,sandboxaq.com\}
King's College London and SandboxAQ
Oleksandra Lapiha
sasha.lapiha.2021@live.rhul.ac.uk
Royal Holloway, University of London

Giacomo Fenzi giacomo.fenzi@epfl.ch EPFL

Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

We construct a non-interactive lattice-based polynomial commitment with:

1. Succinct proofs

2. Succinct verification time

3. Binding under (M)SIS

Techniques

Lattice-Based SNARKs

How to get around [GW11]?

[GW11] - You cannot get SNARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling
Knowledge k-RI-SIS

Lattice Assumptions \bigcirc ROM

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.

- Use lattices to get succinctness in the interactive protocol.
- Open Question: ROM alone is sufficient for efficient PCS (e.g. FRI), what do we gain by using lattices?

Building succinct PCS

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathscr{R}_{q}^{d}$
- Commitment \mathbf{t}, opening \mathbf{S}
- Binding under lattice assumption
- Need $\mathbf{t} \ll d$, binding for \mathbf{f} of arbitrary norm
- Need communication complexity $\ll d$

Evaluation Protocol

"I know f such that $f(u)=v$ and an opening \mathbf{s} for $\mathbf{f}:=\operatorname{coeff}(f)$ to $\mathbf{t} "$

- Need V's running time to be $\ll d$

Trapdoors [MP12]

- Let G be a "gadget matrix"
- Can sample (\mathbf{A}, \mathbf{R}) such that $\mathbf{A R}=\mathbf{G}$, with \mathbf{R} short.
- Given $\mathbf{A}, \mathbf{R}, \mathbf{v}$, can sample short \mathbf{s} such that $\mathbf{A s}=\mathbf{v}$.
"Not nice"

"Nice"

Trapdoor Resampling [WW23]

- Given (A, R), can sample new trapdoor \mathbf{T} for some matrix \mathbf{B} "related" to \mathbf{A}
- BASIS style assumption say:
"Given $\mathbf{A}, \mathbf{B}, \mathbf{T}$, hard to find short \mathbf{x} for $\mathbf{A x}=\mathbf{0}$ "

BASIS-選 [WW23]

BASIS Game

$$
\operatorname{Samp}_{\mathrm{SIS}}\left(\mathbf{A}^{\star}\right)
$$

$$
\text { return } \perp
$$

$$
\begin{array}{ll}
\mathbf{A}^{\star} \leftarrow \mathscr{R}_{q}^{m \times n} & \mathscr{A} \text { wins if it finds } \mathbf{x}: \\
\text { aux } \leftarrow \operatorname{Samp}\left(\mathbf{A}^{\star}\right) & \cdot \mathbf{A}^{\star} \mathbf{x}=0 \\
\text { return }\left(\mathbf{A}^{\star}, \text { aux }\right) \text { to } \mathscr{A} & \cdot 0<\mathbf{x} \leq \beta
\end{array}
$$

$\operatorname{Samp}_{\text {PRISIS }, \ell}\left(\mathbf{A}^{\star}\right)$
Sample a, w
$\mathbf{A}:=\left[\begin{array}{l}\mathbf{a}^{\top} \\ \mathbf{A}^{\star}\end{array}\right], \mathbf{B}:=\left[\begin{array}{llll}w^{0} \mathbf{A} & \ldots & & -\mathbf{G} \\ & \ddots & & \\ & \ldots & w^{\ell-1} \mathbf{A} & -\mathbf{G}\end{array}\right]$
return $\left(\mathbf{a}, w, \mathbf{B}^{-1}(\mathbf{G})\right)$

$$
\begin{aligned}
& \operatorname{Samp}_{\mathrm{BASIs}, \ell}\left(\mathbf{A}^{\star}\right) \\
& \text { Sample } \mathbf{a}, \mathbf{A}_{2}, \ldots \mathbf{A}_{\ell} \\
& \mathbf{A}_{\mathbf{1}}:=\left[\begin{array}{l}
\mathbf{a}^{\top} \\
\mathbf{A}^{\star}
\end{array}\right], \mathbf{B}:=\left[\begin{array}{llll}
\mathbf{A}_{1} & \ldots & & -\mathbf{G} \\
& \ddots & & \\
& \ldots & \mathbf{A}_{d} & -\mathbf{G}
\end{array}\right] \\
& \operatorname{return}\left(\mathbf{a},\left(\mathbf{A}_{i}\right)_{i}, \mathbf{B}^{-1}(\mathbf{G})\right)
\end{aligned}
$$

PRISIS Commitments I
 A starting point [FMN23]

Given $\mathbf{B}:=\left[\begin{array}{llll}w^{0} \mathbf{A} & \ldots & & -\mathbf{G} \\ & \ddots & & \\ & \ldots & w^{\ell-1} \mathbf{A} & -\mathbf{G}\end{array}\right]$ and trapdoor \mathbf{T} for \mathbf{B}
Use \mathbf{T} to sample short $\mathbf{s}_{0}, \ldots, \mathbf{s}_{\ell-1}, \hat{\mathbf{t}}$ such that:

$$
\mathbf{B}\left[\begin{array}{c}
\mathbf{s}_{0} \\
\vdots \\
\mathbf{s}_{\ell-1} \\
\hat{\mathbf{t}}
\end{array}\right]=\left[\begin{array}{c}
-f_{0} w^{0} \mathbf{e}_{1} \\
\vdots \\
-f_{\ell-1} w^{\ell-1} \mathbf{e}_{1}
\end{array}\right] \quad \begin{aligned}
& \text { The commitment is } \mathbf{t}:=\mathbf{G} \hat{\mathbf{t}} \text { and the } \\
& \text { openings are }\left(\mathbf{s}_{i}\right)_{i} . \\
& \text { To open check that } \\
& \\
& \mathbf{A s}_{14}+f_{i} \mathbf{e}_{1}=w^{-i} \mathbf{t} \text { and } \mathbf{s}_{i} \text { short }
\end{aligned}
$$

PRISIS Commitments II

Pros V and Cons X

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Algebraic structure enables efficient evaluation protocol.
- Binding under non-standard PRISIS assumption.
- Time to commit is quadratic.
- Common reference string is quadratic.
- Trusted setup

Can we do better?

Small-Dimension PRISIS

[FMN23]: $\ell=2$ reduces to MSIS

Lemma 3.6 (PRISIS \Longrightarrow MSIS). Let $n>0, m \geq n$ and denote $t=(n+1) \tilde{q}$. Let $q=\omega(N)$. Take $\epsilon \in(0,1 / 3)$ and $\mathfrak{s} \geq \max \left(\sqrt{N \ln (8 N q)} \cdot q^{1 / 2+\epsilon}, \omega\left(N^{3 / 2} \ln ^{3 / 2} N\right)\right)$ such that $2^{10 N} q^{-\lfloor\epsilon N\rfloor}$ is negligible. Let

$$
\sigma \geq \delta \sqrt{t N \cdot\left(N^{2} \mathfrak{s}^{2} m+2 t\right)} \cdot \omega(\sqrt{N \log n N})
$$

Then, $\mathrm{PRISIS}_{n, m, N, q, 2, \sigma, \beta}$ is hard under the $\mathrm{MSIS}_{n, m, N, q, \beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game
$\mathbf{A}_{1}^{\star}, \ldots, \mathbf{A}_{h}^{\star} \leftarrow \mathscr{R}_{q}^{m \times n}$
$\operatorname{aux}_{i} \leftarrow \operatorname{Samp}\left(\mathbf{A}_{i}^{\star}\right)$ for $i \in[h]$
return $\left(\left(\mathbf{A}_{i}^{\star}, \text { aux }_{i}\right)_{i}\right)$ to \mathscr{A}
\mathscr{A} wins if it finds \mathbf{x} :

- $\left[\mathbf{A}_{1}^{\star}, \ldots, \mathbf{A}_{h}^{\star}\right] \cdot \mathbf{x}=0$
- $0<\mathbf{x} \leq \beta$

For $\ell=O(1)$, if PRISIS_{ℓ} is hard so is h - PRISIS $_{\ell}$!

Merkle-PRISIS I

Example with $d=8$

Merkle-PRISIS II

How to check an opening

- Each layer has its own $\mathrm{crs}_{j}:=\left(\mathbf{A}_{j}, w_{j}, \mathbf{T}_{j}\right)$ for $j \in[h:=\log d]$
- Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in\{0,1\}^{h}$:

$$
\sum_{j \in[h]} w_{j}^{b_{j}} \mathbf{A}_{j} \mathbf{s}_{\mathbf{b}: j}+f_{\mathbf{b}} \cdot \mathbf{e}=\mathbf{t}
$$

- And, of course, that all the openings $\mathbf{S}_{\mathbf{b}}$ are short for $\mathbf{b} \in\{0,1\}^{\leq h}$
- Binding: subtract two verification equation:
reduces to h - PRISIS $_{\ell}$ i.e. MSIS!

Merkle-PRISIS III

Pros \vee and Cons X

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Time to commit is quasi-linear.
- Common reference string is logarithmic.
- Binding under standard SIS assumption.

Can we do an efficient evaluation protocol?

Evaluation Protocol I

Strategy

Prover knows:

- Polynomial $f \in \mathscr{R}_{q}^{<d}[X]$ and openings $\left(\mathbf{s}_{\mathbf{b}}\right)_{\mathbf{b}}$

Verifier knows:

- Common reference string crs
- Commitment t
- Claim: $f(u)=v$ and
$\operatorname{Open}\left(\mathrm{crs}, \mathbf{t}, f,\left(\mathbf{s}_{\mathbf{b}}\right)_{\mathbf{b}}\right)=1$

Verifier now knows:

- Common reference string crs'
- Commitment \mathbf{t}^{\prime}
- New claim: $g\left(u^{\prime}\right)=v^{\prime}$ and

Open $\left(\right.$ crs' $\left.^{\prime}, \mathbf{t}^{\prime}, g,\left(\mathbf{z}_{\mathbf{b}}\right)_{\mathbf{b}}\right)=1$

Evaluation Protocol II

Split and fold (Evaluations)

$$
f \in \mathscr{R}_{q}^{<d}[X]
$$

Split

$$
f(X)=f_{L}\left(X^{2}\right)+X \cdot f_{R}\left(X^{2}\right)
$$

$$
\begin{array}{l|l}
\hline f_{L} \in \mathscr{R}_{q}^{<d / 2}[X] & f_{R} \in \mathscr{R}_{q}^{<d / 2}[X]
\end{array}
$$

Fold

$$
g \in \mathscr{R}_{q}^{<d / 2}[X]
$$

$$
g(X)=\alpha_{0} f_{L}(X)+\alpha_{1} f_{R}(X)
$$

Ask prover to send $z_{0}=f_{L}\left(u^{2}\right), z_{1}=f_{R}\left(u^{2}\right)$. Check $z_{0}+u z_{1}=z$ If $f(u)=v$, then $g\left(u^{2}\right)=\alpha_{0} z_{0}+\alpha_{1} z_{1}$.

Evaluation Protocol III

Split and fold (Openings)

Evaluation Protocol IV

Split and fold (Commitment)

- We have shown how to compute new evaluations and openings
- If α_{i} are short, the new openings also are.
- How does the verifier compute new commitment? With some magic:

$$
\sum_{j \in[h-1]} w_{1+j}^{b_{1+j}} \mathbf{A}_{1+j} \mathbf{s}_{\mathbf{b}: 1+j}+g_{\mathbf{b}} \mathbf{e}=\alpha_{0} \cdot\left(\mathbf{t}-w_{1}^{0} \mathbf{A}_{1} \mathbf{s}_{0}\right)+\alpha_{1} \cdot\left(\mathbf{t}-w_{1}^{1} \mathbf{A}_{1} \mathbf{s}_{1}\right)
$$

- Prover reveals $\mathbf{s}_{0}, \mathbf{s}_{1}$. Verifier sets RHS as new updated commitment.

Evaluation Protocol V

Putting it all together

Basic Σ-Protocol

$$
\begin{aligned}
& \text { Prover } \\
& f(\mathrm{X})=f_{0}\left(\mathrm{X}^{2}\right)+\mathrm{X} f_{1}\left(\mathrm{X}^{2}\right) \\
& z_{i}:=f_{i}\left(u^{2}\right) \text { for } i \in \mathbb{Z}_{2} \\
& g(\mathrm{X}):=\alpha_{0} f_{0}(\mathrm{X})+\alpha_{1} f_{1}(\mathrm{X}) \\
& \alpha_{0}, \alpha_{1} \\
& \mathbf{z}_{\mathbf{b}}:=\alpha_{0} \mathbf{S}_{\mathbf{b}, 0}+\alpha_{1} \mathbf{S}_{\mathbf{b}, 1} \text { for } \mathbf{b} \in \mathbb{Z}_{2}^{\leq h-1} \quad g,\left(\mathbf{z}_{\mathbf{b}}\right)_{\mathbf{b}} \\
& z_{0}, z_{1}, \mathbf{s}_{0}, \mathbf{s}_{1} \\
& \alpha_{0}, \alpha_{1} \\
& g,\left(\mathbf{z}_{\mathbf{b}}\right)_{\mathbf{b}} \\
& \mathrm{crs}^{\prime}:=\left(\mathbf{A}_{1+t}, w_{1+t}, \mathbf{T}_{1+t}\right)_{t \in[h-1]} \\
& \mathbf{t}^{\prime}:=\alpha_{0} \cdot\left(\mathbf{t}-w_{1}^{0} \mathbf{A}_{1} \mathbf{s}_{0}\right)+\alpha_{1} \cdot\left(\mathbf{t}-w_{1}^{1} \mathbf{A}_{1} \mathbf{s}_{1}\right) \\
& u^{\prime}:=u^{2} ; z^{\prime}:=\alpha_{0} \cdot z_{0}+\alpha_{1} \cdot z_{1} \\
& \text { Check: } g\left(u^{\prime}\right)=z^{\prime} \\
& \text { Check: Open }\left(\text { crs }^{\prime}, \mathbf{t}^{\prime}, g,\left(\mathbf{z}_{\mathbf{b}}\right)_{\mathbf{b}}\right)=1
\end{aligned}
$$

Are we done?

- Apply protocol recursively $\log d$ times and send final opening $O(1)$.
- Knowledge soundness follows from coordinate-wise special soundness.
- Commitment is succinct, verifier also succinct.
- Problem : Knowledge soundness error is $1 / \operatorname{poly}(\lambda)$.
- Can be made negligible by parallel repetition, but then no Fiat-Shamir!
- Change the challenge space?
- Non-subtractive challenge space => Blowup in extraction, cannot do more than $\log \log d$ recursions => only quasi-polylogarithmic sizes.
- Subtractive challenge space $=>$ Challenge space of size at most poly (λ) [AL21]

Claim bundling I

Let's prove something harder!

- Instead of proving $f(u)=v$, show that, for $l \in[r], f_{l}(u)=v_{l}$
- As in [FMN23], our protocol can be easily extended to deal with this.

Randomness is now:

$$
\left[\begin{array}{ll}
\alpha_{0, L, 0}, \alpha_{0, R, 0}, \alpha_{1, L, 0}, \alpha_{1, R, 0} \\
\alpha_{0, L, 1}, \alpha_{0, R, 1}, \alpha_{1, L, 1}, \alpha_{1, R, 1}
\end{array}\right] \in\left(\mathscr{C}^{r}\right)^{2 r} \quad \begin{aligned}
& \alpha_{l, i, \kappa} \text { folds } f_{l, i} \\
& \\
& \text { into } g_{\kappa}
\end{aligned}
$$

Folded polynomial:

$$
\begin{aligned}
& g_{0}:=\alpha_{0, L, 0} f_{0, L}+\alpha_{0, R, 0} f_{0, R}+\alpha_{1, L, 0} f_{1, L}+\alpha_{1, R, 0} f_{1, R} \\
& g_{1}:=\alpha_{0, L, 1} f_{0, L}+\alpha_{0, R, 1} f_{0, R}+\alpha_{1, L, 1} f_{1, L}+\alpha_{1, R, 1} f_{1, R}
\end{aligned}
$$

Claim bundling II

What did we gain?

- Now, protocol is $2 r$ coordinate-wise special sound with challenge space of size roughly poly $(\lambda)^{r}$
- Setting r to be polylog (λ), we achieve negligible knowledge error!
- Our protocol can now be made non-interactive using FS.
- To prove a single claim $f(u)=v$, simply set $f_{1}, \ldots, f_{r}=f$ and $v_{1}, \ldots, v_{r}=v$.

Recap:

What we talked about

- PRISIS and Merkle-PRISIS commitments
- Multi-instance PRISIS assumptions
- h-PRISIS 2 reduces to MSIS
- Succinct evaluation protocol for Merkle-PRISIS
- Boosting soundness via claim bundling

There is more!

What we did not talk about

- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathscr{R}_{q} in those for \mathbb{Z}_{q} (efficient packing)
- Twin- k - M-ISIS is no easier than $2 k$ - M-ISIS
- Setting concrete parameters
- Reductions... all the reductions

Conclusion

x
 SLAP

A non-interactive lattice-based polynomial commitment with succinct proofs and verification time, from standard lattice assumptions.

Open Questions

- Can we get succinct lattice-based polynomial commitments under 100KB?
- Can we get negl(λ) knowledge error in one-shot (no claim bundling)?
- Is PRISIS_{ℓ} with $\ell>2$ still secure?

Thank you!

