

Succinct Lattice-Based Polynomial Commitment Schemes from Standard Assumptions

Giacomo Fenzi @ EPFL

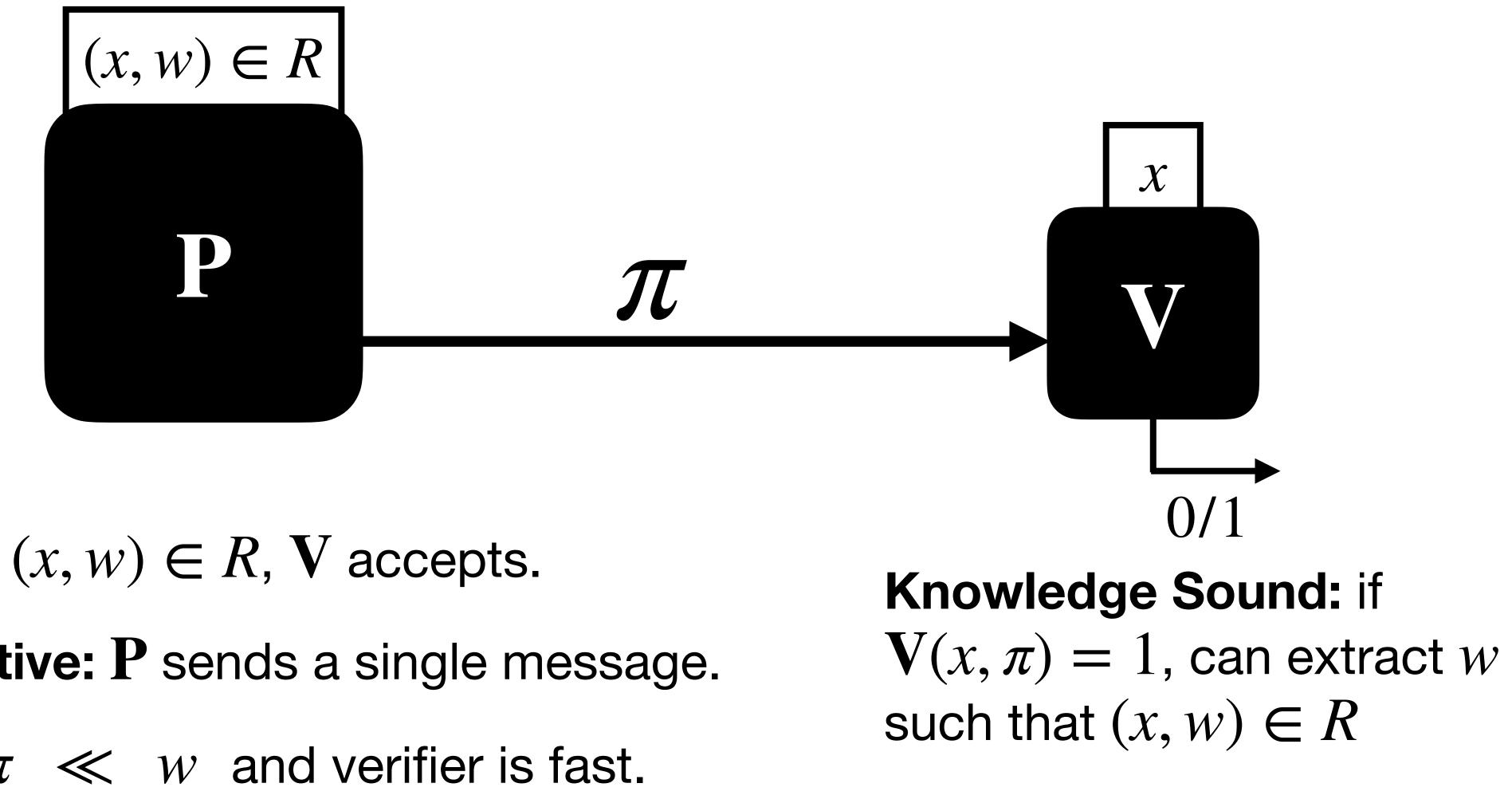
Joint work with: Martin Albrecht Ngoc Khanh Nguyen

Oleksandra Lapiha

Notivation

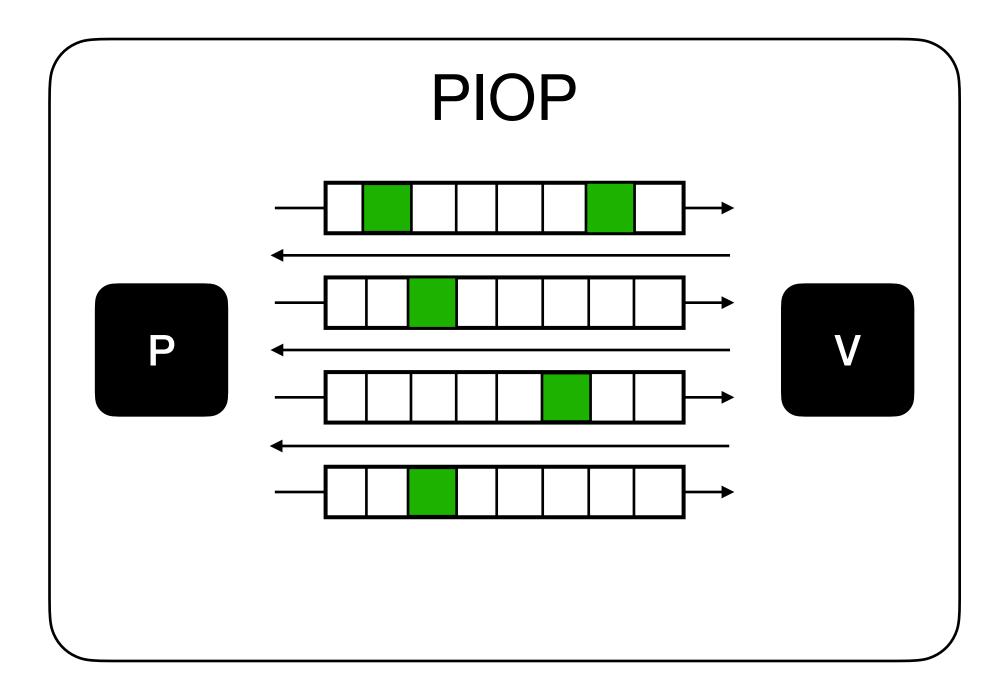
SNARKs

(Succinct Non-Interactive ARguments of Knowledge)



Complete: if $(x, w) \in R$, V accepts. Non-interactive: P sends a single message. **Succinct:** $\pi \ll w$ and verifier is fast.

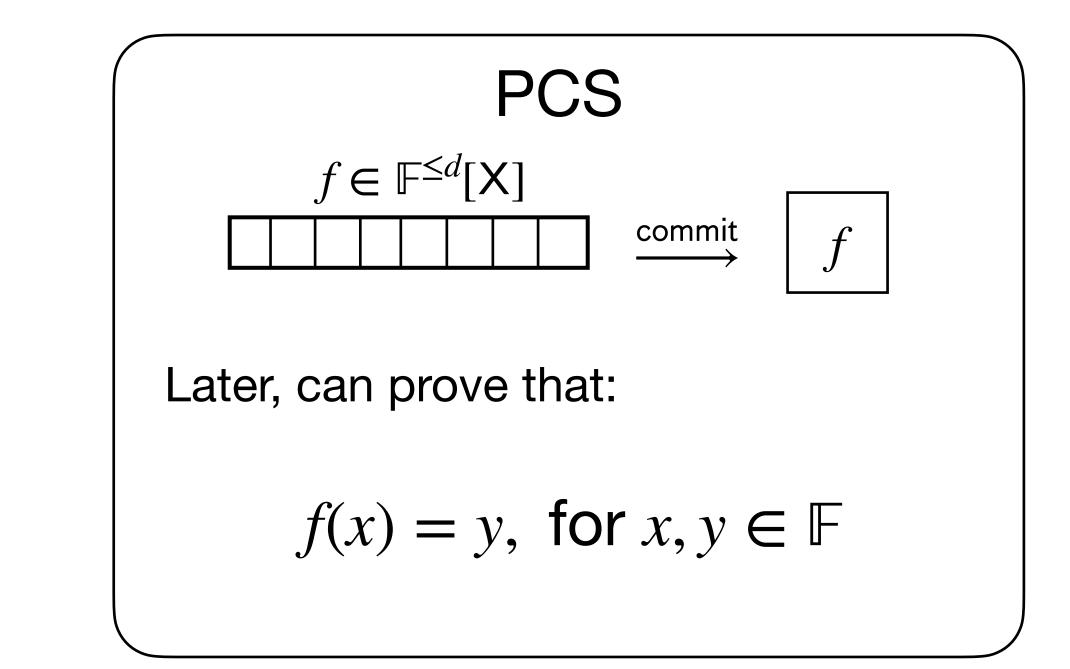
Constructing SNARKs The modular way[™]



- Oracles are polynomials
- Security is information-theoretical
- Proof length is $\Omega(n)$ (not succinct)
- Verifiers are very efficient

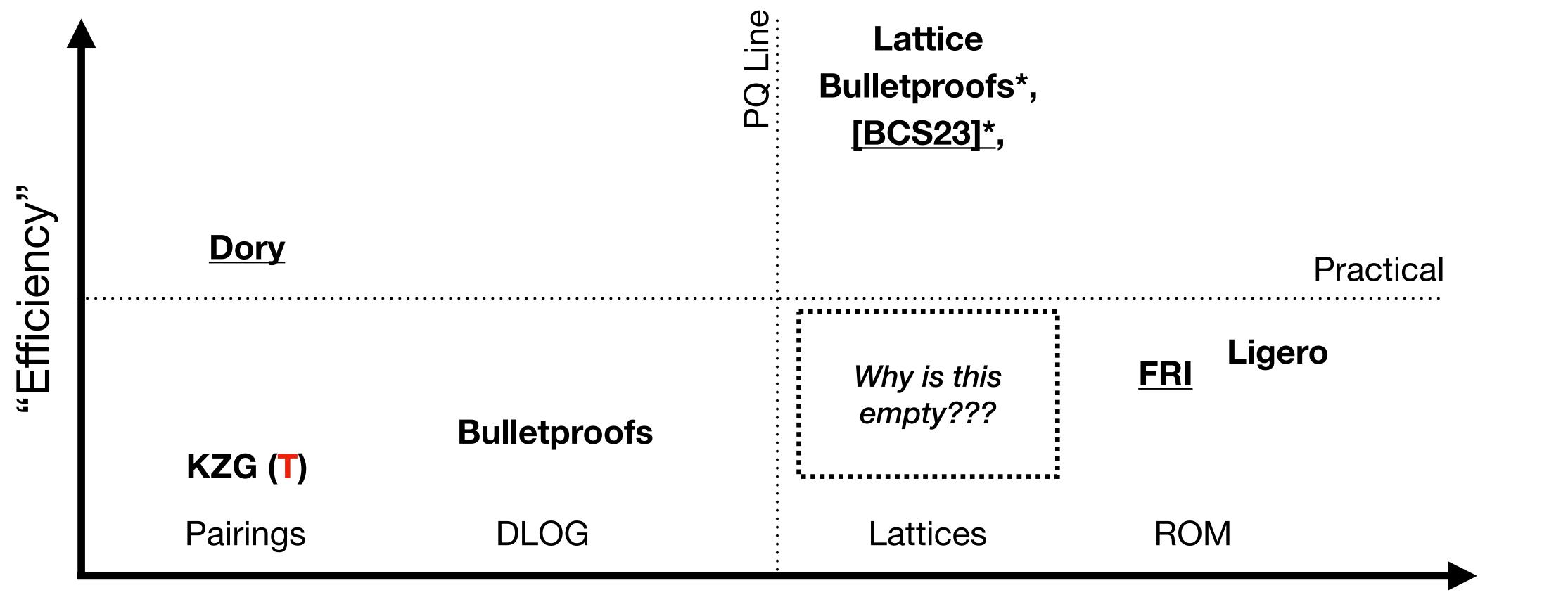
FS

We focus on this!



- Cryptography goes here!
- Computational security
- We can achieve succinctness

Zoo of Polynomial Commitments A very incomplete list...



"Structure axis"

<u>Underlined:</u> succinct verification *: interactive (no FS) (T): trusted setup

Our Results

SLAP: Succinct Lattice-Based Polynomial Commitments from Standard Assumptions

Martin R. Albrecht martin.albrecht@{kcl.ac.uk,sandboxaq.com} King's College London and SandboxAQ

Oleksandra Lapiha sasha.lapiha.2021@live.rhul.ac.uk Royal Holloway, University of London

- 1. Succinct proofs
- 2. Succinct verification time
- 3. Binding under (M)SIS

Giacomo Fenzi giacomo.fenzi@epfl.ch \mathbf{EPFL}

Ngoc Khanh Nguyen khanh.nguyen@epfl.ch EPFL

We construct a non-interactive lattice-based polynomial commitment with:

Lattice-Based SNARKs How to get around [GW11]?

[GW11] - You cannot get **SN**ARG from falsifiable assumptions.

Knowledge Assumptions

Oblivious LWE Sampling

Post-Quantum zk-SNARK for Arithmetic Circuits

QUANTUM OBLIVIOUS LWE SAMPLING AND INSECURITY OF STANDARD MODEL LATTICE-BASED SNARKS

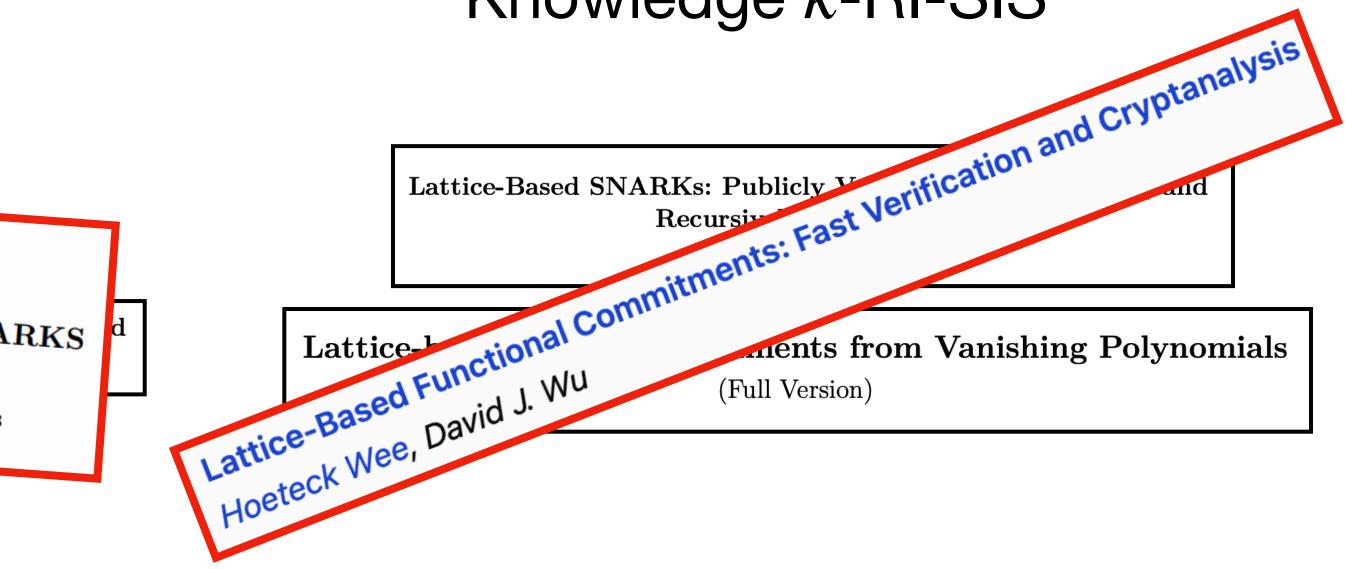
THOMAS DEBRIS–ALAZARD ¹, POURIA FALLAHPOUR ², AND DAMIEN STEHLÉ ^{2,3}

Lattice-Based zk-SNARKs from Square Sp

Shorter and Faster 1 Ost w

Designated-Verifier zkSNARKs from Lattices*

Knowledge *k*-RI-SIS



Lattice Assumptions V ROM

- Knowledge assumptions in "lattice-land": hard to define and easy-ish to break
- ROM takes care of extraction and non-interactivity.

Special Sound Interactive Protocol

- Use lattices to get succinctness in the interactive protocol.
- **Open Question**: ROM alone is sufficient for efficient PCS (e.g. FRI), what do we gain by using lattices?

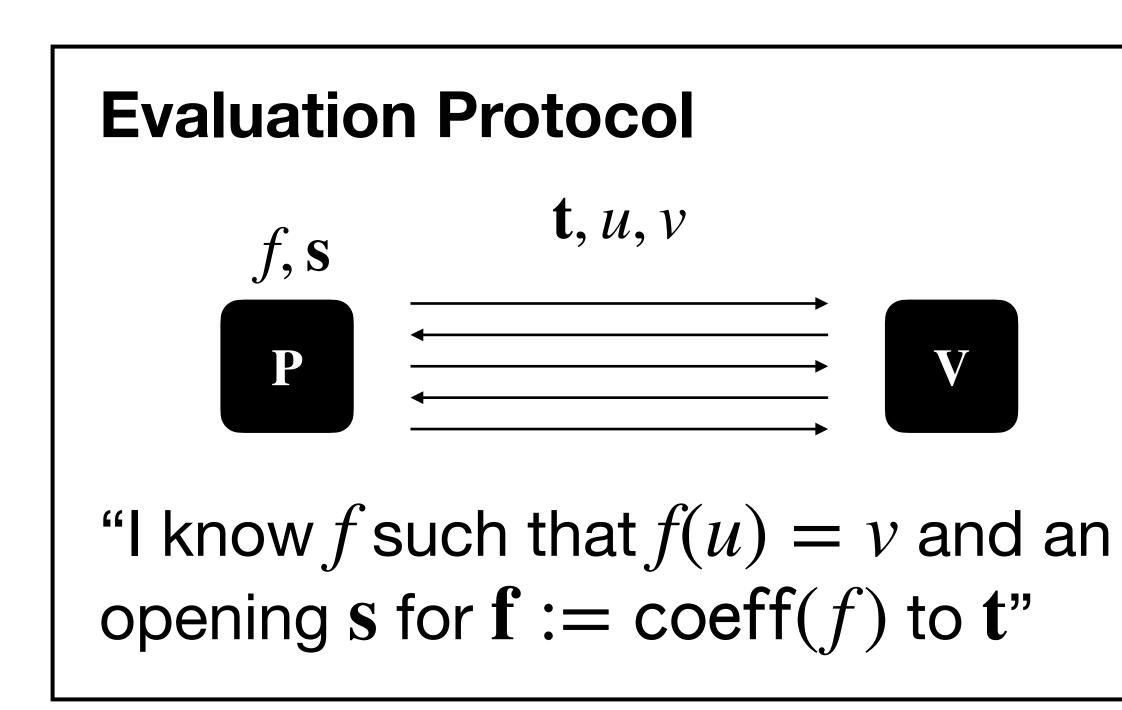
Fiat-Shamir Transform

Knowledge Sound

Building succinct PCS

Commitment Scheme

- Commit to a vector $\mathbf{f} \in \mathscr{R}_a^d$
- Commitment **t**, opening **s**
- Binding under lattice assumption \bullet
- Need $\mathbf{t} \ll d$, binding for \mathbf{f} of arbitrary norm
- Need communication complexity $\ll d$



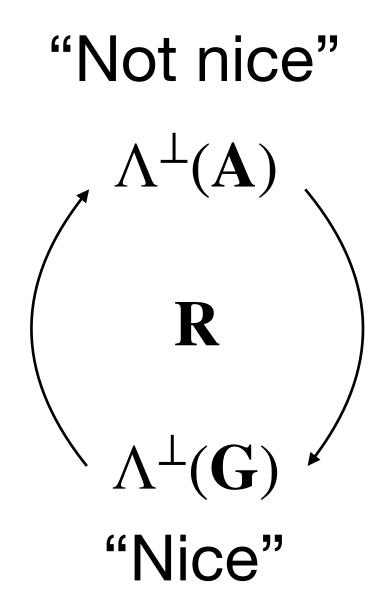
• Need V's running time to be $\ll d$

Trapdoors [MP12]

- Let G be a "gadget matrix"
- Can sample (\mathbf{A}, \mathbf{R}) such that $\mathbf{A}\mathbf{R} = \mathbf{G}$, with \mathbf{R} short.
- Given A, R, v, can sample short s such that As = v.

Trapdoor Resampling [WW23]

- BASIS style assumption say:
 - "Given A, B, T, hard to find short x for Ax = 0"



• Given (A, R), can sample new trapdoor T for some matrix B "related" to A

$$\mathsf{Samp}_{\mathsf{SIS}}(\mathbf{A}^{\star})$$

return ⊥

BASIS Game $\mathbf{A}^{\star} \leftarrow \mathscr{R}_q^{m \times n}$ $aux \leftarrow Samp(A^{\star})$

$$\begin{split} & \mathsf{Samp}_{\mathsf{BASIS},\ell}(\mathbf{A}^{\star}) \\ & \mathsf{Sample}\; \mathbf{a}, \mathbf{A}_{2}, \dots \mathbf{A}_{\ell} \\ & \mathbf{A}_{1} := \begin{bmatrix} \mathbf{a}^{\top} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} \mathbf{A}_{1} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & \mathbf{A}_{d} & -\mathbf{G} \end{bmatrix} \\ & \mathsf{return}\; (\mathbf{a}, (\mathbf{A}_{i})_{i}, \mathbf{B}^{-1}(\mathbf{G})) \end{split}$$

return (\mathbf{A}^{\star} , aux) to \mathscr{A}

 \mathscr{A} wins if it finds **x**:

- $\mathbf{A}^{\star}\mathbf{x} = \mathbf{0}$
- $0 < \mathbf{x} \leq \beta$

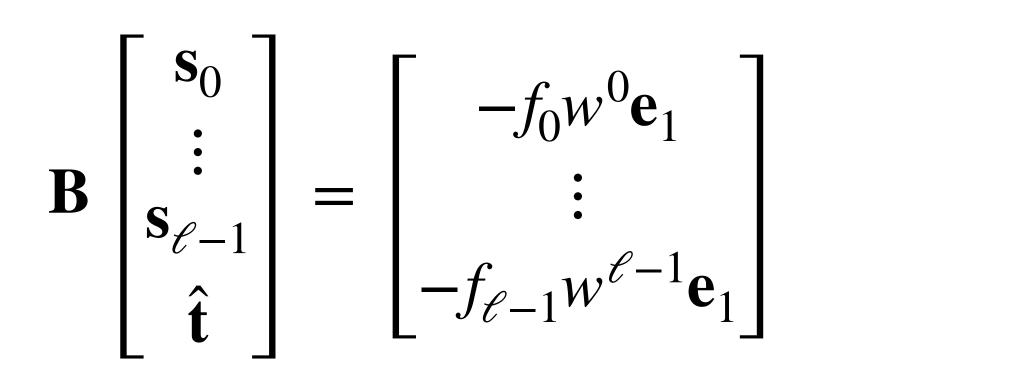
$$\begin{aligned} & \mathsf{Samp}_{\mathsf{PRISIS},\ell}(\mathbf{A}^{\star}) \\ & \mathsf{Sample} \; \mathbf{a}, w \\ & \mathbf{A} := \begin{bmatrix} \mathbf{a}^{\mathsf{T}} \\ \mathbf{A}^{\star} \end{bmatrix}, \mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & -\mathbf{G} \\ & \ddots & \\ & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \\ & & \dots & w^{\ell-1} \mathbf{A} & -\mathbf{G} \\ & & \text{return} \; (\mathbf{a}, w, \mathbf{B}^{-1}(\mathbf{G})) \end{aligned}$$

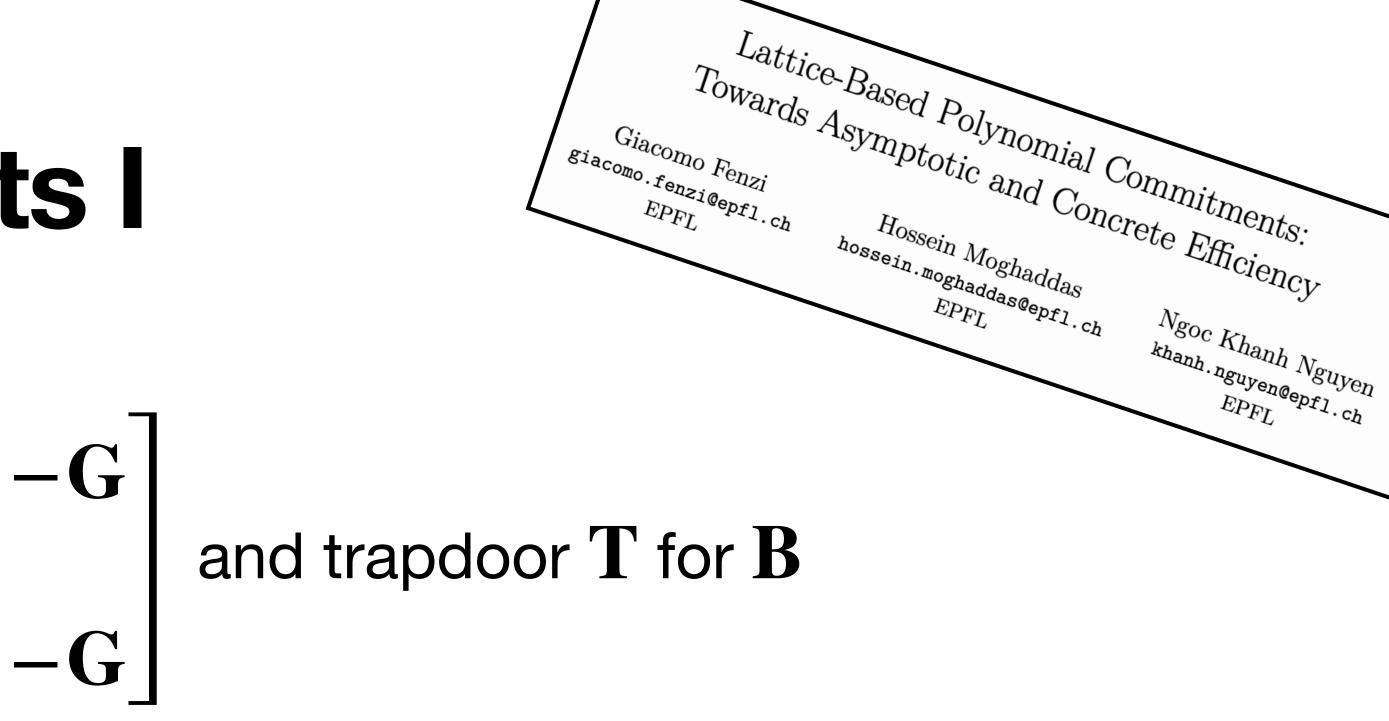


PRISIS Commitments I A starting point [FMN23]

Given
$$\mathbf{B} := \begin{bmatrix} w^0 \mathbf{A} & \dots & & \\ & \ddots & \\ & & w^{\ell-1} \mathbf{A} \end{bmatrix}$$

Use **T** to sample short $\mathbf{s}_0, \ldots, \mathbf{s}_{\ell-1}, \hat{\mathbf{t}}$ such that:





The commitment is $\mathbf{t} := \mathbf{G}\hat{\mathbf{t}}$ and the openings are $(\mathbf{s}_i)_i$.

To open check that

$$\mathbf{As}_{i} + f_{i}\mathbf{e}_{1} = w^{-i}\mathbf{t} \text{ and } \mathbf{s}_{i} \text{ short}$$

PRISIS Commitments II Pros M and **Cons X**

- Commitment is succinct.
- Supports committing to messages of arbitrary size.
- Common reference string is quadratic. • Algebraic structure enables efficient evaluation protocol.

- Binding under non-standard PRISIS assumption.
- Time to commit is **quadratic**.

Trusted setup

Can we do better?

Small-Dimension PRISIS [FMN23]: $\ell = 2$ reduces to MSIS

Lemma 3.6 (PRISIS \implies MSIS). Let $n > 0, m \ge n$ and denote $t = (n+1)\tilde{q}$. Let $q = \omega(N)$. Take $\epsilon \in (0, 1/3)$ and $\mathfrak{s} \geq \max(\sqrt{N \ln(8Nq)} \cdot q^{1/2+\epsilon}, \omega(N^{3/2} \ln^{3/2} N))$ such that $2^{10N}q^{-\lfloor \epsilon N \rfloor}$ is negligible. Let

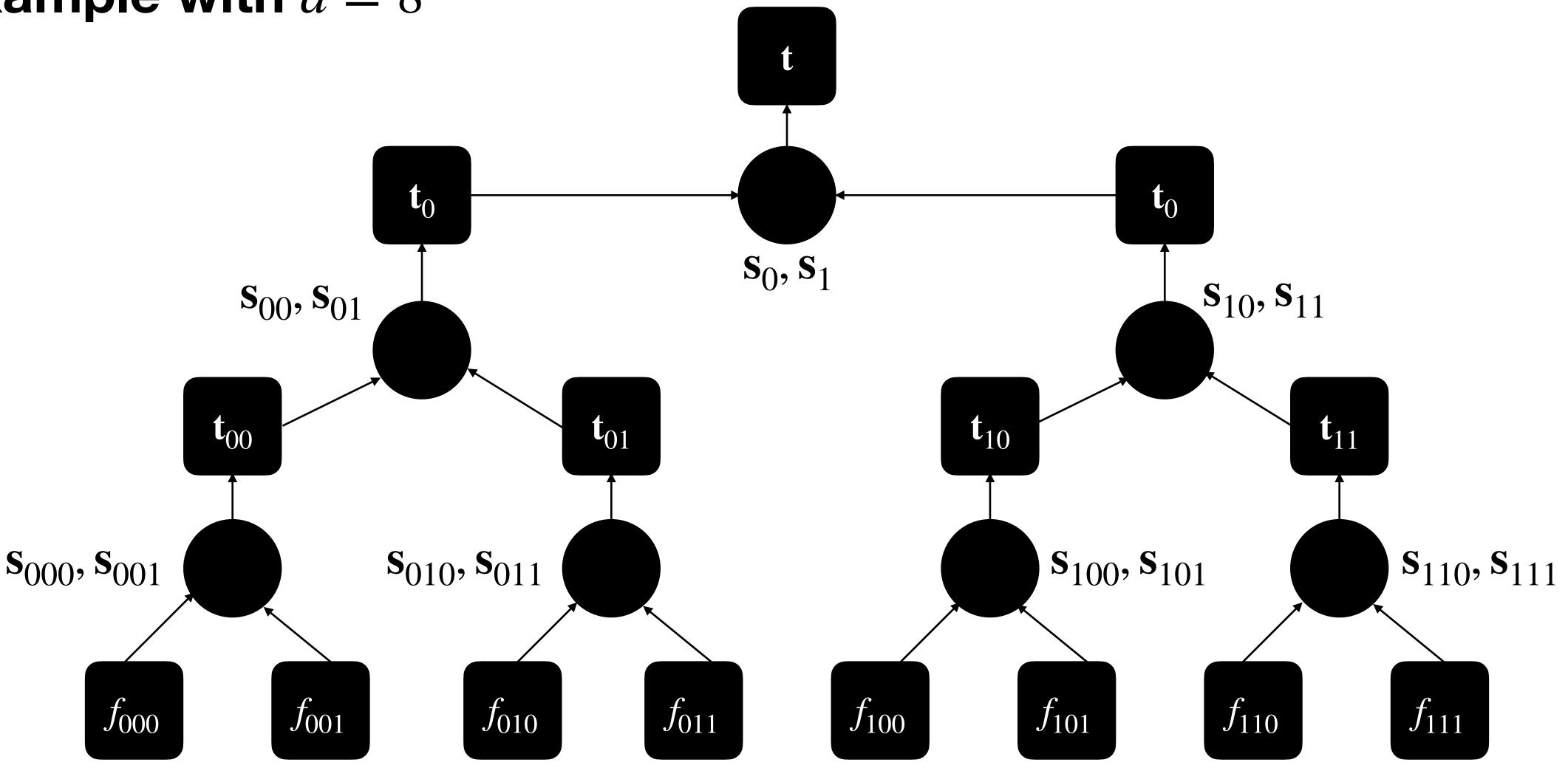
 $\sigma \ge \delta \sqrt{tN} \cdot (N^2 \mathfrak{s}^2 m + 2t) \cdot \omega(\sqrt{N \log nN}).$ Then, $PRISIS_{n,m,N,q,2,\sigma,\beta}$ is hard under the $MSIS_{n,m,N,q,\beta}$ assumption.

Multi-Instance BASIS

h-instance BASIS Game \mathscr{A} wins if it finds **x**: $\mathbf{A}_{1}^{\star}, \dots, \mathbf{A}_{h}^{\star} \leftarrow \mathscr{R}_{q}^{m \times n}$ • $[\mathbf{A}_1^{\star}, \dots, \mathbf{A}_h^{\star}] \cdot \mathbf{x} = 0$ $aux_i \leftarrow Samp(A_i^{\star})$ for $i \in [h]$ • $0 < \mathbf{x} \leq \beta$ return $((\mathbf{A}_i^{\star}, \mathbf{aux}_i)_i)$ to \mathscr{A}

For $\ell = O(1)$, if PRISIS_{ℓ} is hard so is h-PRISIS_{ρ}!

Merkle-PRISIS I Example with d = 8



Merkle-PRISIS II How to check an opening

- Each layer has its own $\operatorname{crs}_j := (\mathbf{A}_j,$

$$\sum_{j \in [h]} w_j^{b_j} A$$

- And, of course, that all the openings $\mathbf{s_h}$ are short for $\mathbf{b} \in \{0,1\}^{\leq h}$
- **Binding**: subtract two verification equation: reduces to h-PRISIS $_{\ell}$ i.e. **MSIS**!

$$w_j, \mathbf{T}_j$$
) for $j \in [h := \log d]$

• Check that all local openings are correct. I.e. check that, for $\mathbf{b} \in \{0,1\}^h$:

$$\mathbf{s}_{j}\mathbf{s}_{\mathbf{b}:j} + f_{\mathbf{b}} \cdot \mathbf{e} = \mathbf{t}$$

Merkle-PRISIS III Pros M and **Cons**

- Commitment is **succinct**.
- Supports committing to messages of arbitrary size.
- Time to commit is **quasi-linear**.
- Common reference string is logarithmic.
- Binding under standard SIS assumption.

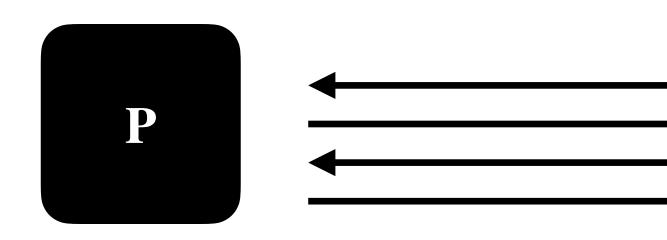
Trusted setup

Can we do an efficient evaluation protocol?

Evaluation Protocol I Strategy

Prover knows:

• Polynomial $f \in \mathscr{R}_q^{< d}[X]$ and openings $(\mathbf{s_b})_{\mathbf{b}}$

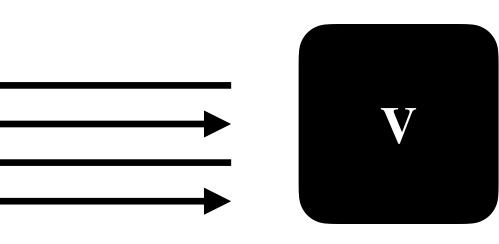


Prover now knows:

• Polynomial $g \in \mathscr{R}_q^{< d/2}[X]$ and openings $(\mathbf{z_b})_{\mathbf{b}}$

Verifier knows:

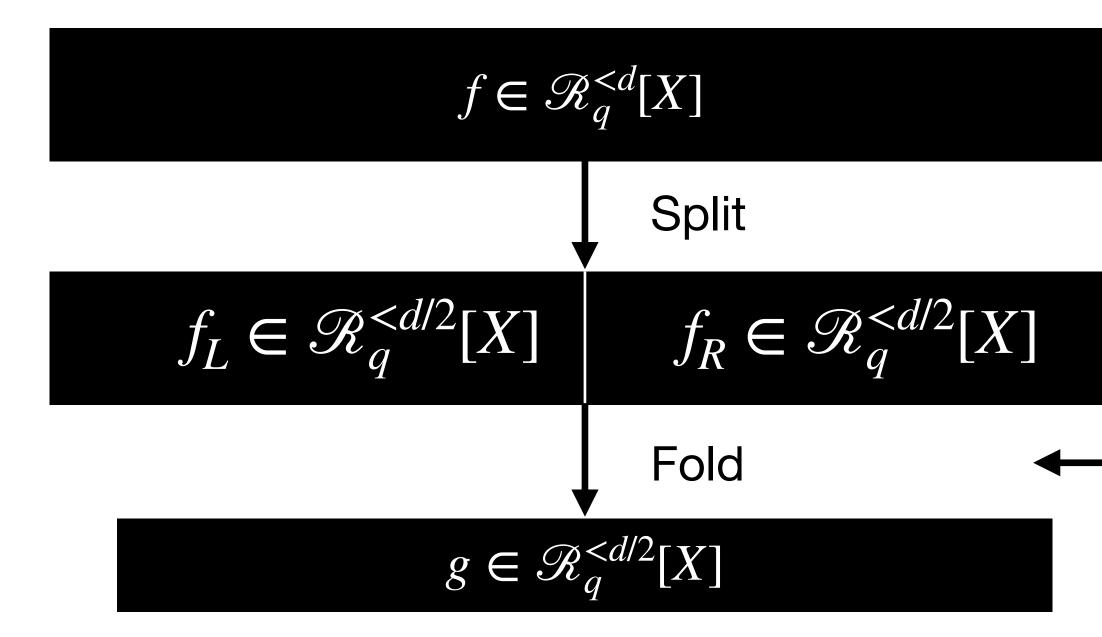
- Common reference string crs
- Commitment **t**
- Claim: f(u) = v and Open(crs, $\mathbf{t}, f, (\mathbf{s_b})_{\mathbf{b}}) = 1$



Verifier now knows:

- Common reference string crs[']
- Commitment t'
- New claim: g(u') = v' and Open(crs', t', g, $(\mathbf{z_b})_{\mathbf{b}}) = 1$

Evaluation Protocol II Split and fold (Evaluations)



If f(u) = v, then $g(u^2) = \alpha_0 z_0 + \alpha_1 z_1$.

Fast Reed-Solomon Interactive Oracle Proofs of Proximity Ynon Horesh* Michael Riabzev*

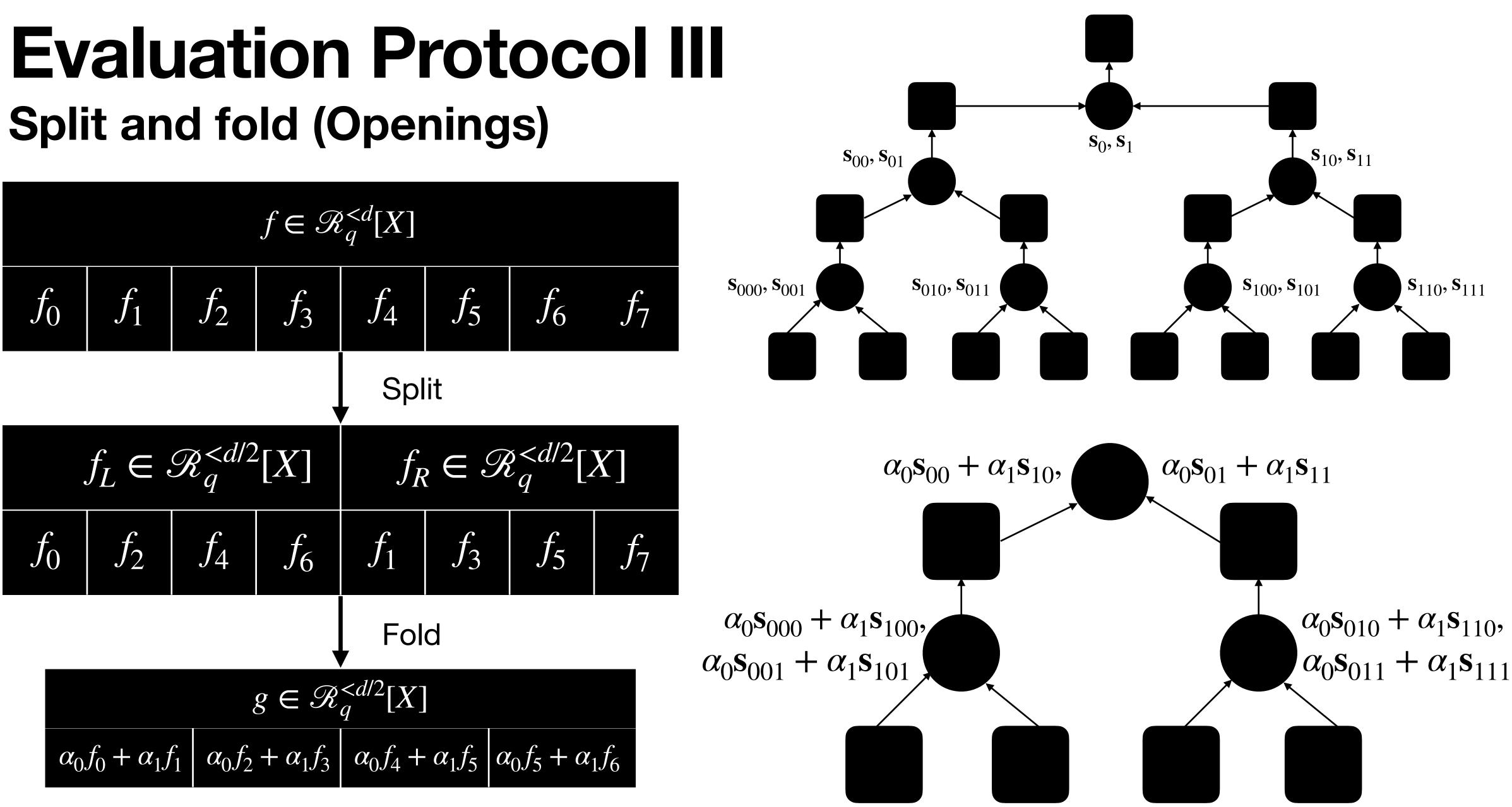
 $f(X) = f_I(X^2) + X \cdot f_R(X^2)$

$$\alpha_0, \alpha_1$$

$$\mathbf{y}$$

$$g(X) = \alpha_0 f_L(X) + \alpha_1 f_R(X)$$

Ask prover to send $z_0 = f_L(u^2), z_1 = f_R(u^2)$. Check $z_0 + uz_1 = z$



Evaluation Protocol IV Split and fold (Commitment)

- We have shown how to compute new evaluations and openings
- If α_i are short, the new openings also are.
- How does the verifier compute new commitment? With some magic:

$$\sum_{j \in [h-1]} w_{1+j}^{b_{1+j}} \mathbf{A}_{1+j} \mathbf{s}_{\mathbf{b}:1+j} + g_{\mathbf{b}} \mathbf{e} = \alpha_0 \cdot (\mathbf{t} - w_1^0 \mathbf{A}_1 \mathbf{s}_0) + \alpha_1 \cdot (\mathbf{t} - w_1^1 \mathbf{A}_1 \mathbf{s}_1)$$

• Prover reveals s_0, s_1 . Verifier sets RHS as new updated commitment.

Evaluation Protocol V Putting it all together

Basic Σ -Protocol

Prover $f(\mathsf{X}) = f_0(\mathsf{X}^2) + \mathsf{X} f_1(\mathsf{X}^2)$ $z_i \coloneqq f_i(u^2) \text{ for } i \in \mathbb{Z}_2 \qquad \qquad \underbrace{z_0, z_1}_{q_0}$ $g(\mathsf{X}) \coloneqq \alpha_0 f_0(\mathsf{X}) + \alpha_1 f_1(\mathsf{X}) \qquad \qquad \underbrace{\alpha_0}_{q_0}$ $z_{\mathbf{b}} \coloneqq \alpha_0 \mathbf{s}_{\mathbf{b},0} + \alpha_1 \mathbf{s}_{\mathbf{b},1} \text{ for } \mathbf{b} \in \mathbb{Z}_2^{\leq h-1} \qquad g, (\mathbf{s}_1)$

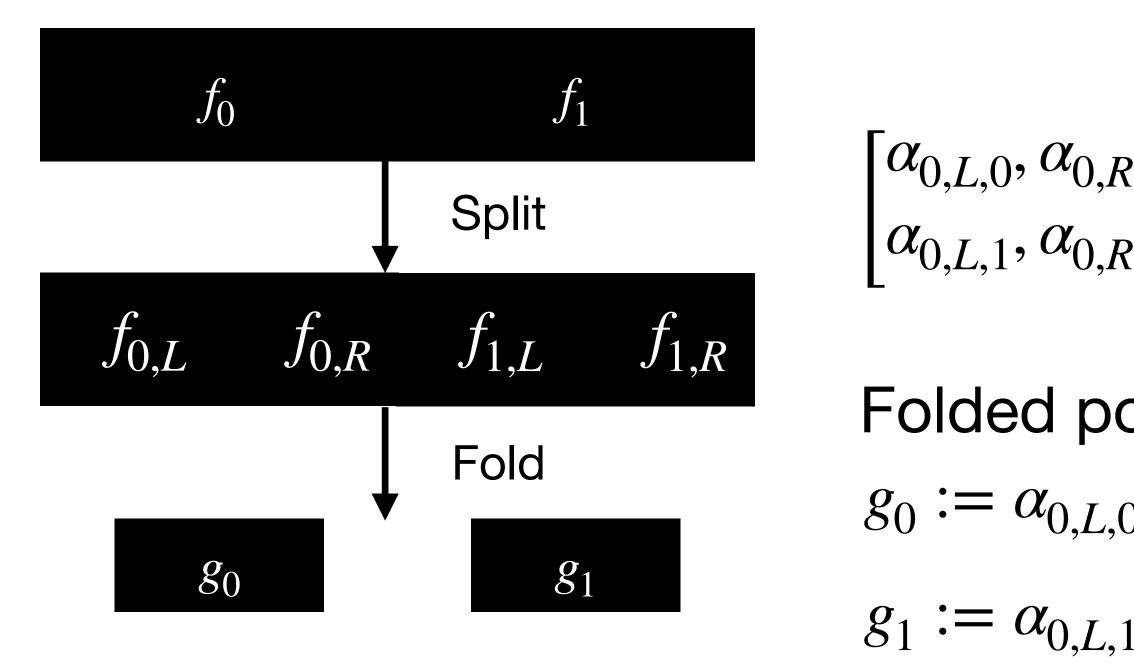
Verifier

Are we done?

- Apply protocol recursively $\log d$ times and send final opening O(1).
- Knowledge soundness follows from coordinate-wise special soundness. • Commitment is **succinct**, verifier also **succinct**.
- **Problem** \bigcirc : Knowledge soundness error is $1/\text{poly}(\lambda)$.
- Can be made negligible by parallel repetition, but then no Fiat-Shamir!
- Change the challenge space?
 - Non-subtractive challenge space => Blowup in extraction, cannot do more than log log *d* recursions => only **quasi-polylogarithmic** sizes.
 - Subtractive challenge space => Challenge space of size at most $poly(\lambda)$ [AL21]

Claim bundling Let's prove something harder!

- Instead of proving f(u) = v, show that, for $u \in [r], f(u) = v_{u}$
- As in [FMN23], our protocol can be easily extended to deal with this.



Randomness is now:

$$\begin{array}{l} _{R,0}, \alpha_{1,L,0}, \alpha_{1,R,0} \\ _{R,1}, \alpha_{1,L,1}, \alpha_{1,R,1} \end{array} \end{bmatrix} \in (\mathscr{C}^{r})^{2r} \qquad \begin{array}{l} \alpha_{i,i,\kappa} \text{ folds } f_{i,i} \\ \text{ into } g_{\kappa} \end{array}$$

Folded polynomial:

$$f_{0,L} + \alpha_{0,R,0} f_{0,R} + \alpha_{1,L,0} f_{1,L} + \alpha_{1,R,0} f_{1,R}$$

$$f_{0,L} + \alpha_{0,R,1} f_{0,R} + \alpha_{1,L,1} f_{1,L} + \alpha_{1,R,1} f_{1,R}$$

Claim bundling II What did we gain?

- size roughly $poly(\lambda)^r$
- Setting r to be $polylog(\lambda)$, we achieve **negligible knowledge error**!
- Our protocol can now be made non-interactive using FS.

• Now, protocol is 2r coordinate-wise special sound with challenge space of

• To prove a single claim f(u) = v, simply set $f_1, \ldots, f_r = f$ and $v_1, \ldots, v_r = v$.

Recap:

What we talked about

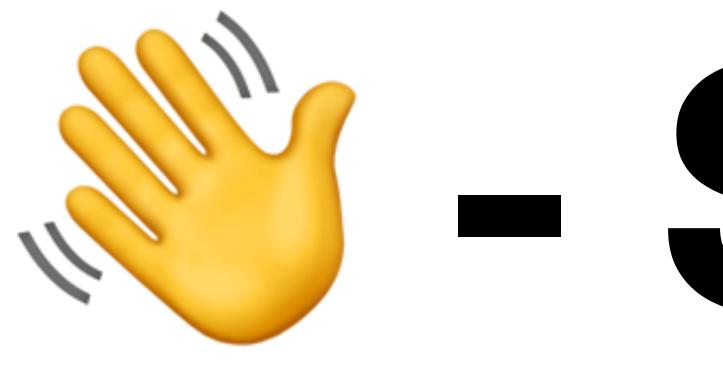
- PRISIS and Merkle-PRISIS commitments
- Multi-instance PRISIS assumptions
- *h*-PRISIS₂ reduces to MSIS
- Succinct evaluation protocol for Merkle-PRISIS
- Boosting soundness via claim bundling

There is more!

What we did not talk about

- Folding more at each step
- Coordinate-wise special soundness
- Honest-verifier zero knowledge for our PCS
- Transforming PCS for \mathscr{R}_q in those for \mathbb{Z}_q (efficient packing)
- Twin-k-M-ISIS is no easier than 2k-M-ISIS
- Setting concrete parameters
- Reductions... all the reductions

Conclusion



<u>A non-interactive lattice-based</u> polynomial commitment with succinct proofs and verification time, from standard lattice assumptions.

Open Questions

- Can we get $negl(\lambda)$ knowledge error in one-shot (no claim bundling)?
- Is $PRISIS_{\ell}$ with $\ell > 2$ still secure?

Can we get succinct lattice-based polynomial commitments under 100KB?

