
SNARKs in practice
An entirely too short primer
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Preliminaries



SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of  s.t. w (i, x, w) ∈ ℛ e.g. ℛ := {(C, x, w) : C(w) = x}

π
0/1

P

(i, x, w) ∈ R

V
𝗏𝗄, x
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Today: we focus on  

SNARKs from functional 
commitments

Almost all practical SNARKs follow this recipe

Ii 𝗏𝗄

Security will be ultimately in idealized models



Interactive succinct arguments
A stepping stone to SNARGs

m1

0/1

P V

(x, w) ∈ R

xr1
m2

⋮

IARG has state-restoration soundness/knowledge soundness 
 ARG is sound/knowledge sound in the ROM with ⟹ κ𝖠𝖱𝖦 ≤ κ𝖲𝖱

If number of rounds is superconstant 
regular soundness/knowledge 
soundness are not sufficient



Proof string Query class  Answer

PCP+VC [Kilian92] 
IOP+VC [BCS16,CDGS23]

point queries

LPCP+LC [LM19] linear queries

PIOP+PC [CHM+20,BFS20]
evaluation queries on 
polynomials

PIOP*+PC* [GWC19]
evaluation queries on 
structured polys

How to build succinct interactive arguments?
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Some approaches…

and more: Bulletproofs (and other sumcheck-based arguments), linear-only encodings [BCIOP13, GGPR13, Groth16], …

β = Π[α] for α ∈ [ℓ]Π ∈ Σℓ Q𝗉𝗈𝗂𝗇𝗍

Π ∈ 𝔽ℓ β = ∑i∈[ℓ] Π[i] ⋅ α[i] for α ∈ 𝔽ℓQ𝗅𝗂𝗇

Π ∈ 𝔽[X]≤𝖣 β = ∑i∈[ℓ] Π[i] ⋅ αi−1 for α ∈ 𝔽Q𝗉𝗈𝗅𝗒

Π ∈ (𝔽[X]≤𝖣)m+n β = ∑k∈[n] hk( f1(α), ⋯, fm(α)) ⋅ gk(α)

= ( f1, …, fm, g1, …, gn)
Q𝗉𝗈𝗅𝗒*



Proof string Query class  Answer

PCP+VC [Kilian92] 
IOP+VC [BCS16,CDGS23]

point queries

How to build succinct interactive arguments?

β = Π[α] for α ∈ [ℓ]Π ∈ Σℓ

Π ∈ 𝔽ℓ β = ∑i∈[ℓ] Π[i] ⋅ α[i] for α ∈ 𝔽ℓ
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FIOP+FC Π ∈ Σℓ  Q = {α : Σℓ → 𝔻} β = α(Π) ∈ 𝔻 for α ∈ Q

Functional IOP is purely an 
information theoretical construction.

Functional Commitments  
are where cryptography goes+ ROM

Non-interactive arguments in: 
ROM + Crypto[FC]



FIOP + FC

Π2

Π1𝖯𝖥𝖨𝖮𝖯 𝖵𝖥𝖨𝖮𝖯

FIOP for ℛ

Prover sends proof strings 


Verifier can ask functional queries  
where  

Σℓ

α ∈ Q
α : Σℓ → 𝔻

α1 ← Q
α2 ← Q

IARG for ℛ

P V

P V

σ1 := 𝖥𝖢𝗈𝗆𝗆𝗂𝗍(Π1)

σ2 := 𝖥𝖢𝗈𝗆𝗆𝗂𝗍(Π2)

𝖥𝖢𝖤𝗏𝖺𝗅(Π1, α1, y1)

𝖥𝖢𝖤𝗏𝖺𝗅(Π2, α2, y2)

y1, y2 := α1(Π1), α2(Π2)
α1 ← Q
α2 ← Q

α1, α2

y1 := α1(Π1)
y2 := α2(Π2)



Concrete security
Let  be a scheme which takes a security parameter 

Typically, theoretical cryptography cares about asymptotic security

𝒮 λ

∀𝒜 ∈ 𝗉𝗈𝗅𝗒(λ), Pr [ 𝒜 breaks 𝒮(λ) ] ≤ negl(λ)

For practical deployment, we want concrete security

∀𝒜 ∈ 𝖠𝖽𝗏(R), Pr [𝒜 breaks 𝒮(λ)] ≤ ϵ(λ, R)

Holds for every  which will depend on 
the adversary resources.  

If  is too large no guarantees in practice

λ > λ0

λ0

For every adversary with some 
resources

Modelling the resources  of the 
adversary allows to choose  to get 

meaningful guarantees

R
λ

Many additional considerations in this:  
extractor running time, average vs worst case security 



Metrics that we care about
Having fixed  to achieve the required security guarantees, 

we generally care about the following three metrics:

λ

Argument size

Relevant to minimize 
bandwidth

Elliptic curve based arguments: 
argument size  KiB< 1

PIOP+PC paradigm

We usually aim for  λ = 128

Prover time Verifier time 

IOP+VC paradigm

Relevant to reduce the cost of deploying arguments

Hash based arguments (for instances of size ): 
• Argument string contains 160KiB 
• proof generates in ~1s on a laptop  
• can be verified in ~600μs

226

Lattice based? They seem to be 
promising to get best-of-both-worlds 

arguments, but more research is needed



Security properties
[CGKY25]
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ARG = Funky[FIOP, FC] for a query class Q

ϵ𝖥𝖢(t ⋅ 𝗄 ⋅ 𝖭 + tQ ⋅ 𝗄)ϵ𝖥𝖨𝖮𝖯(𝗄, ℓ)

     FIOP is state-restoration (knowledge) sound  
  + FC is state-restoration function binding 

 ARG = Funky[FIOP, FC] is state-restoration (knowledge) sound ⇒
ϵ𝖠𝖱𝖦(𝗄, ℓ, t) ≤ + + 𝗄 ⋅𝖲𝖱 𝖲𝖱𝖲𝖱 ϵQ(ℓ, 𝗊, 𝖭)

Depends only QState-restoration function 
binding of FC

State-restoration (knowledge) 
soundness of FIOP

This error is not used in practice! 
The recipe yields (in general) a secure interactive 

arguments.  
In practice tighter bounds are obtained by 

analyzing the resulting SNARK

https://eprint.iacr.org/2025/902.pdf


Things I will not talk about

Stronger security properties

P̃ S
π

x

(x*, π*)

Simulation extractability 
and non-malleability UC-security

Recursion

⊥

x0

P𝖨𝖵𝖢

π1

x1F

P𝖨𝖵𝖢

π2

x2F

P𝖨𝖵𝖢

π3

x3F

Recursion is extremely practical.

Most concrete SNARKs use one or more layers of 
recursion.


Accumulation and folding schemes new exciting 
directions to exploit recursion.


Deployed systems only heuristically secure, problematic 
(especially in light of [KRS25]) 

Zero knowledge 

Most practical deployed systems  
do not guarantee zero-knowledge 

They still brand themselves as zk…



Minimizing 
argument size



PIOP + PC

13

Proof string Query class  Answer

PCP+VC [Kilian92] 
IOP+VC [BCS16,CDGS23]

point queries

β = Π[α] for α ∈ [ℓ]Π ∈ Σℓ

Π ∈ 𝔽ℓ β = ∑i∈[ℓ] Π[i] ⋅ α[i] for α ∈ 𝔽ℓ
PIOP+PC ̂f ∈ 𝔽≤D[X] point queries Q𝗉𝗈𝗂𝗇𝗍 β = ∑i∈[ℓ] Π[i] ⋅ αi−1 for α ∈ 𝔽



[KZG10]
Univariate PCS with  proof sizeO(1)

Assume bilinear pairings e : 𝔾 × 𝔾 → 𝔾T

𝖲𝖾𝗍𝗎𝗉(d)
Choose  s.t.  
Sample  
Output: 

 

G 𝔾 = ⟨g⟩
α ← 𝔽

𝗉𝗄 = (g, gα, …, gαd−1)
𝗏𝗄 = (g, gα)

𝖢𝗈𝗆𝗆𝗂𝗍(𝗉𝗄, ̂f(X))

Output σf = g ̂f(α)

𝖯𝗋𝗈𝗏𝖾(𝗉𝗄, z, y, ̂f(X))

Compute   

Output 

ŵ(X) =
̂f(X) − y
X − z

σw = gŵ(α)

𝖵𝖾𝗋𝗂𝖿𝗒(𝗏𝗄, σf, z, y, σw)

Check e(σf, g) = e(σw, gα−z) ⋅ e(g, g)y

Other types of pairings 
are typically used

Can be computed with an MSM from 𝗉𝗄

Proof size and verification speed are 
constant number of group elements 
and operations

Concretely two curves are used:


On BN254 (  bits of security)


B


On BLS12-381 (  bits of security)


B

≈ 100
|σf | + |σw | = 64

≈ 128
|σf | + |σw | = 96

Relies on a private-coin setup.


If  is public there is no security

Security proven in AGM 

or under SDH-type assumptions

α

Also, very good batching properties! Can batch 
many openings of distinct polynomials

Of the curve, not of KZG!



Univariate sumcheck [BCRSVW19]

Let  be a multiplicative subgroup and let : 

 if and only if 

H ⊆ 𝔽 ̂f ∈ 𝔽<d[X]

∑
a∈H

̂f(a) = γ
∃ ̂g ∈ 𝔽<d−|H|[X]
∃ĥ ∈ 𝔽<|H|[X]

: ̂f(X) = ̂g(X) ⋅ VH(X) + ĥ(X)

Lemma

Lincheck PIOP: 

Show that ∀i ∈ H : (M ⋅ ̂f )(i) = ̂g(i)

P V

̂f
̂g

̂p
̂q

̂r(z) ⋅ ̂g(z) − (M⊤ ⋅ ̂r)(z) ⋅ ̂f(z) = ̂p(z) ⋅ VH(z) + z ⋅ ̂q(z)

Used extensively in PIOP such as Aurora, Marlin, Fractal, Plonk, fflonk, 
Turboplonk, Ultraplonk, Honk, … 

Argument string is a (small) constant number of group elements 

Example:  
Marlin PIOP with KZG on BL12-381 is 880B

Putting it all together 

r ← 𝔽



Ceremonies Follow a 1-out-N security model

Logistically quite hard to setup but can be done

KZG (and derived arguments) have universal setup:


Once done, the same  can be used for 

many different circuits being proven (as long as the 
setup is large enough)

𝗉𝗄, 𝗏𝗄

Concretely efficient argument/polynomial 
commitment without private coin setup and 

argument size  KiB  

Concretely efficient argument/polynomial 
commitment with post-quantum security and 

argument size  KiB 

< 5

< 20

Open Qs



Even smaller proof sizes
Groth16: Most widely deployed succinct argument


Secure in the AGM, argument string is .

Over BLS12-381 this is 192 B.

3 ⋅ 𝔾

Recent improvement:  
Achieve smaller proof sizes using a 
combination of AGM + ROM

Over BLS12-381: 176 B
Over BLS12-381: 160 B

Stronger private coin setup requirements: 
the setup must be done once per circuit

Can we get even smaller SNARKs? 

Get argument of comparable size with universal setup

Open Qs

Does not follow our recipe, but a similar one based on linear-PCPs



Minimizing  
prover & verifier cost



IOP + VC
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Proof string Query class  Answer

PCP+VC [Kilian92] 
IOP+VC [BCS16,CDGS23]

point queries

β = Π[α] for α ∈ [ℓ]Π ∈ Σℓ

Π ∈ 𝔽ℓ β = ∑i∈[ℓ] Π[i] ⋅ α[i] for α ∈ 𝔽ℓ
IOP+VC Π ∈ Σℓ point queries Q𝗉𝗈𝗂𝗇𝗍 β = Π[α] for α ∈ [ℓ]

Something quite magical happens here: 
Merkle trees are non-interactive vector commitments  

in the pure ROM: 

Can construct succinct arguments in the pure ROM

Simple cryptography, work shifted to the IOP

Are Merkle tree optimal as VC in the ROM? 

More concretely efficient post-quantum vector 
commitment schemes

Open Qs



Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

20

Committing to  field elements on a 
laptop can be done in ms 

Committing to  field elements using 
an MSM is on the order of m

226

≈ 800

226

≈ 3

Not an entirely fair comparison, but gives 
some intuition

https://zka.lc/


Our focus

IOP-based SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

Proof length 


Queries 

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

21

Small, tens of KiB

BCS construction: 
Merkle Trees + FS



Linear codes 𝒞 : 𝔽k → 𝔽n, 𝒞(v) = G𝒞 ⋅ v

Message

↦
Redundancy

Parameters of interest

Minimum distance: 


Rate:  and encoding time: 

δ𝒞 := min
u,u′ ∈𝒞

Δ(u, u′ )

ρ =
k
n

𝖾𝗇𝖼𝒞

Hamming distanceTranslates to verifier efficiency

Translates to prover ro queries. 
Usually O(1)

Translates to prover time

22

Generator matrixInjective

Error correcting codes will be used to redundantly encode 
witnesses of NP relation, and then prove claims about them. 

Modern IOP (and accumulation schemes) almost entirely 
inherit their efficiency property from the choice of code used

It’s all about the code



̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP
𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

Strategy: use Reed-Solomon codes as 
“redundant” encoding. Use a proximity 
test to check claims on encoded oracles.

The efficiency of the IOP  
is almost entirely determined by  

the proximity test23



IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the 

code

Evaluations of polynomials of degree  

on a domain  of size . 

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS

Goal: minimize queries to  and other 
proof oracles.

f

f : L → 𝔽

24

Convenience

Completeness

If  then  acceptsf ∈ 𝖱𝖲[n, m, ρ] V

Soundness

If  then w.h.p.  rejectsΔ( f, 𝖱𝖲[n, m, ρ]) > δ V



Constrained RS tests

25

Reed-Solomon Proximity Test on virtual function: 

f′ (x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial  and a commitment to (an 
encoding of it)  such that  

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′ (x) :=
f(x) − y

x − z
Reed—Solomon 

proximity test for f′ 
+

Can the proximity test directly 
enforce the constraint?


Yes! IOPP for constrained codes



Constrained codes
Idea: enrich proximity tests by enforcing constraints on the messages encoded by the word being tested.

𝒞[ ̂P, β, η] = {f ∈ 𝒞 : ̂P(β, 𝒞−1( f )) = η}
Constraint and 

parameters
Value of constraint

Sumcheck constraints

We will be interested in one particular type of constraints

26

Note:  
 means that: 

For every , the message  
does not satisfy the constraint  

Δ( f, 𝒞[ ̂P, β, η]) > δ
u ∈ Λ(𝒞, f, δ) w := 𝒞−1(u)

̂P(β, w) = η

𝒞[ ̂v, η] = f ∈ 𝒞 : ∑
b∈{0,1}m

̂f(b) ⋅ ̂v(b) = η
Very powerful! If  this 
captures evaluation claims

of multilinear polynomials at 

̂v(b) = 𝖾𝗊(b, z)

z ∈ 𝔽m



Multilinear sumcheck
[LFNK92]

𝖯 𝖵

∑
b∈{0,1}m

̂v(b) ⋅ ̂f(b) = η

ĥ1

α1

⋮
ĥm

αm

Check that: 




,

…


ĥ1(0) + ĥ1(1) = η
ĥ2(0) + ĥ2(1) = ĥ(α1)

̂f(α) ⋅ ̂v(α) = ĥm(αm)

Compute: 







…

ĥ1(X) = ∑
b∈{0,1}m−1

̂v(X, b) ⋅ ̂f(X, b)

ĥ2(X) = ∑
b∈{0,1}m−2

̂v(α1, X, b) ⋅ ̂f(α1, X, b)

Extremely powerful! 
Only requires  rounds 

Prover can be implemented in  field operations 
Verifier runs in time 

m
O(2m)

O(m + | ̂f | + | ̂v | )

Recent trend in succinct arguments is to use 
multilinear PIOPs instead of univariate 

because of multilinear sumcheck

Is there a constant round sumcheck 
protocol with linear prover time?

Open Qs

This makes sense when argument size is not a bottleneck 



WHIR 🌪
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g

Domain shift

Recurse g ∈ 𝖢𝖱𝖲 [ n
2

, m − k, ρ′ := 21−k ⋅ ρ, ŵ*, σ*]

Batching

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥiA 1000 ft view

Interleaving of RS folding (FRI) with 
multilinear sumchecks

BaseFold, Gemini, …

OOD samples: powerful technique 
to work in the list-decoding regime

Domain shift, efficient technique to 
reduce query complexity by better 

exploiting the problem size 
decreasing during recursion 

Recursing: sequence of rates .


For , set 

ρi := 2(1−k)⋅i ⋅ ρ

ε𝖱𝖡𝖱 ≤ 2−λ ti :=
λ

−log ρi

Fewer each 
round!

1/2 1/16 1/128

200 50 29

k = 4, λ = 100 i = 1i = 0 i = 2

ρi

ti
…



Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O ( λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O ( λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O ( λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k

29

When 
 

 
OPTIMAL

k ≈ log m
q𝖶𝖧𝖨𝖱 = O(λ)

When 
 

 
OPTIMAL

k ≈ log m
O(q𝖶𝖧𝖨𝖱 ⋅ |Σ | )

When  
 

Improving is an  
open question

k ≈ log m
Σ = 𝔽m



Trusted setup  
Pairing-based

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.


• Other verifiers require several MILLI-seconds (and more).


• While maintaining state-of-the-art prover time & argument size

30

Verifier time 
(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] WHIR[1/16]

3500 733 - 100 7.81 2.42 0.61 0.29

3680 750 130 151 9.92 3.66 1.4 0.6

λ = 100

λ = 128

WHIR[ ] denotes 
WHIR with rate 

ρ
ρ

Transparent setup 
Hash-based



Comparison with FRI and STIR

2^24 coeffs 
rate = 1/4 FRI WHIR

Size (KiB) 177 110

Verifier time 2.4ms 700μs

2^30 coeffs 
rate = 1/2 FRI WHIR

Size (KiB) 494 187

Verifier time 4.4ms 1.3ms

2^24 coeffs 
Rate = 1/4

31

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22

Note: prover time graph is now outdated 
due to new optimizations discovered
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Rate of the code ρ = 1/2

FRI, STIR, WHIR



Mutual correlated agreement

32

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. : 

Agreement: then .


Correlated agreement: then  
agree with  on the same “stripe”

Δ( f*, 𝒞) ≤ δ

Δ( fi, 𝒞) ≤ δ

f1, …, fm
𝒞

Mutual correlated agreement: the stripe 
in which  agree with  is the 
same on which  does: 
 
“No new correlated domains appear”

f1, …, fm 𝒞
f*

Security analysis relies on 
properties of random 

combinations of linear error 
correcting codes

Correlated agreement for RS codes up 
to distance δ > 1 − ρ

Huge Open Q



Implied by mutual correlated agreement
Folding and lists commute

33

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of 
codewords of  that are -close 

to 

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required 
for FRI/STIR’s soundness

w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

Lemma

w.h.p. over :r
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

Lemma

Alternatively, each term in the l.h.s can be 
“explained" by terms in the r.h.s.


We show correlated agreement implies mutual 
correlated agreement in unique decoding.

Recent results show that mutual correlated agreement 
holds up to 1.5 Johnson for general linear codes!



Conclusion



Open questions

Concretely efficient argument/polynomial 
commitment without private coin setup and 

argument size  KiB  

Concretely efficient argument/polynomial 
commitment with post-quantum security and 

argument size  KiB 

< 5

< 20

Open Qs

Correlated agreement for RS codes up 
to distance δ > 1 − ρ

Huge Open Q

Can we get even smaller SNARKs? 

Get argument of comparable size with universal setup

Open Qs

Are Merkle tree optimal as VC in the ROM? 

More concretely efficient post-quantum vector 
commitment schemes

Open Qs

Is there a constant round sumcheck 
protocol with linear prover time?

Open Qs

IOPP with optimal query complexity and 
verifier time in the constant alphabet regime.

Open Qs

In this talk



Open questions

Linear time accumulation schemes with constant 
round complexity

Open Qs

Concretely efficient constructions of relativizing 
arguments in the AROM or similar idealized models.

Open Qs

Lattice-based polynomial commitments/arguments with: 
polylogarithmic verification & argument size  KiB< 50

Open Qs

Is there an analogue of parallel repetition that 
amplifies state-restoration soundness?

Open Qs

Other things that are super interesting

Linear time accumulation schemes  
over small fields

Open Qs

UC-security for recursive proof composition (in 
GROM or AROM)

Open Qs



Awh Arc Aurora BaseFold
Binius Brakedown Bulletproofs CycleFold
Dory DEEP-FRI FRI Fractal

Geppetto Gemini Groth16 Greyhound
Halo Halo2 HyperNova HyperPlonk
Hyrax Jolt Kilonova KZG
Lasso LatticeFold Libra Ligero
Lova Mangrove Marlin MIRAGE
Mova Nova Origami Orion

Pickles Pinocchio Plonk Plonky2
ProtoGalaxy ProtoStar Reverie Sangria

Shout SLAP Sonic Spartan
SPARKs Spice STARK STIR

SuperNova Supersonic TinySpartan Twist
Twinkle Virgo WARP WHIR

Lots of schemes!

ChatGPT generated, so most likely not 
complete

• Accumulation scheme 
• Polynomial commitment scheme 
• Interactive oracle proof of proximity 
• Memory argument/lookup 
• Full SNARK

Thanks for listening!



Extra slides



PIOP + PCS
The modular way™

P V

PIOP PCS

• Oracles are polynomials 
• Security is information-theoretical 
• Proof length is  (not succinct) 
• Verifiers are very efficient

Ω(n)

+
f ∈ 𝔽≤d[𝖷]

𝖼𝗈𝗆𝗆𝗂𝗍 f

Later, can prove that:

f(x) = y,  for x, y ∈ 𝔽

• Cryptography goes here! 
• Computational security 
• We can achieve succinctness

We focus on this!
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Plenty of choices 
available: Aurora, Fractal, 

Spartan…



Compilers

P Vπ

0/1

(x, w)
x

f

SNARK in ROM

P V

IOP

𝖬𝖳𝖢𝗈𝗆𝗆𝗂𝗍
f𝖬𝖳

Merkle trees + Fiat-Shamir

f𝖥𝖲

PIOP

IOPP for 𝖱𝖲[𝔽, d, L]

P V

P V

PIOPP for 𝖱𝖲[𝔽, d, L0]

P V

P V

IOPP for 𝖱𝖲[𝔽, d /k, L1]

PIOPP for 𝖱𝖲[𝔽, d /k, L1]

IOPP for 𝖱𝖲[𝔽, d /k2, L2]

PIOPP for 𝖱𝖲[𝔽, d /k2, L1]

IOPP for 𝖱𝖲[𝔽, d /k3, L2]

PIOPP

IOPP

IOPP for 𝖱𝖲[𝔽, O(1), LM]

Σ-IOP

IOPP for 𝖢𝖱𝖲[𝔽, d, L]

P V

P V

Σ-IOPP for 𝖢𝖱𝖲[𝔽, d, L0]

P V

P V

IOPP for 𝖢𝖱𝖲[𝔽, d /k, L1]

Σ-IOPP for 𝖢𝖱𝖲[𝔽, d /k, L1]

IOPP for 𝖢𝖱𝖲[𝔽, d /k2, L2]

Σ-IOPP for 𝖢𝖱𝖲[𝔽, d /k2, L1]

IOPP for 𝖢𝖱𝖲[𝔽, d /k3, L2]

Σ-IOPP

IOPP

IOPP for 𝖢𝖱𝖲[𝔽, O(1), LM]Spartan

Aurora



Accumulation



Incrementally Verifiable Computation (IVC)
To prove  ,  prove  such that .xT = FT(x0) ∃x1, …, xT−1 ∀i ∈ [T], xi = F(xi−1)

⊥

x0

P𝖨𝖵𝖢

π1

x1F

P𝖨𝖵𝖢

π2

x2F

P𝖨𝖵𝖢

π3

x3F
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 checks 
that  attests the  

whole computation!

V𝖨𝖵𝖢(xi−1, xi, πi)
πi

IVC can be generalized to Proof-Carrying-Data (PCD). 

PCD considers a directed acyclic graph instead of a line.

PCD in practice is preferable to IVC, as it enables reducing the prover's latency. Wonderful! How 

do I get IVC?

 costs  
independent from   ✅

P𝖨𝖵𝖢
T

E.g. signature aggregation: 
F((σi, pki), bi) := bi ∧ 𝖲𝗂𝗀𝖵𝖿𝗒(𝗌𝗍, pki, σi)



P𝖨𝖵𝖢

πi−1

xi−1 F

πi

xi

IVC from SNARKs
Recursive proof composition
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P𝖠𝖱𝖦
Prove that  and 

 accepts 
F(xi−1) = xi

V𝖠𝖱𝖦 πi−1

V𝖨𝖵𝖢

V𝖠𝖱𝖦
Check  is a valid proofπi

(*) more complex than this, 
needs preprocessing

PQ SNARK  
 PQ IVC ✅⟹

Cheap verification ✅

independent from   ✅|π | T

Memory costs 
independent from   ✅T

Cost of   
Concretely:  constraints 

i.e. recursive overhead is quite large 
Good starting point, but can be improved!

P𝖨𝖵𝖢 ≈ |F | + |V𝖠𝖱𝖦 |
|V𝖠𝖱𝖦 | ≈ 220



Accumulation Schemes
A lightweight tool for batching
Enables batching many checks  into an accumulator . 


 verifies that adding the inputs into  was done correctly


 decides whether  is valid.

(xi, wi) ∈? ℛ 𝖺𝖼𝖼
V𝖠𝖢𝖢 𝖺𝖼𝖼
D𝖠𝖢𝖢 𝖺𝖼𝖼

𝖺𝖼𝖼1, …, 𝖺𝖼𝖼ℓ2

(x1, w1), …, (xℓ1
, wℓ1

)

P𝖠𝖢𝖢

𝖺𝖼𝖼

𝗉𝖿

If:

V𝖠𝖢𝖢((xi)i, (𝖺𝖼𝖼j)j, 𝖺𝖼𝖼, 𝗉𝖿) = 1a)

D𝖠𝖢𝖢(𝖺𝖼𝖼) = 1b)

Then w.h.p:
 ∀i ∈ [ℓ1] : (xi, wi) ∈ ℛ

∀j ∈ [ℓ2] : D𝖠𝖢𝖢(𝖺𝖼𝖼j) = 1
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This talk: ℓ := ℓ1 + ℓ2

Any ARG yields ACC with 
. 

We can do (significantly) better!
|V𝖠𝖢𝖢 | ≈ |V𝖠𝖱𝖦(ℓ1) |

These might have accumulated 
many instance-witness pairs



P𝖨𝖵𝖢
xi−1 xi

V𝖨𝖵𝖢

V𝖠𝖢𝖢(xi−1, 𝖺𝖼𝖼i−1, 𝖺𝖼𝖼i, 𝗉𝖿i)

D𝖠𝖢𝖢(𝖺𝖼𝖼i)

P𝖠𝖢𝖢
Prove that  and  

 verified  was 
correctly accumulated

F(xi−1) = xi
V𝖠𝖢𝖢 𝖺𝖼𝖼i−1

Wrap with a final SNARK 
 succinct verification ✅⟹

IVC from accumulation
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(*) actually we need a more refined notion: 
"split" accumulation schemes

𝖺𝖼𝖼i

𝗉𝖿i

Cost of  V𝖨𝖵𝖢 ≈ |V𝖠𝖢𝖢 | + |D𝖠𝖢𝖢 |
PQ Accumulation  

 PQ IVC ✅⟹ independent from   ✅|π | T

Memory costs 
independent from   ✅T

Cost of  ✅P𝖨𝖵𝖢 ≈ |F | + |V𝖠𝖢𝖢 |
≪ |V𝖠𝖱𝖦 |

Not succinct

𝖺𝖼𝖼i−1

𝗉𝖿i−1

F



One more thing…
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Accumulation schemes:

Accumulation schemes are broadly useful for integrity in distributed systems with repeated computations.

Verifiable Virtual Machines (VVMs)

+ At least 25 more…

And more…

Consensus

Nova, Supernova, Hypernova, 
Protostar, Protogalaxy, NeutronNova, 

KZHFold, …

Group-based

Latticefold, Lova, Latticefold+, Neo

Lattice-based Awh, ARC, WARP

Hash-based
Must use 256-bit fields, accumulation 

time super-linear, cycles of curves 
required for recursion, not pq

Very promising, 
accumulation costs super-

linear, plausibly pq 
some field flexibility

Accumulation costs can be linear, 
plausibly pq, full field flexibility

Digital provenance

https://x.com/eth_proofs/status/1918926204834320684


NP-relation of choice

ℛ𝖱𝟣𝖢𝖲(𝔽) = (i, x, w) :

i = (A, B, C, M, N, k)
x ∈ 𝔽N−k

w ∈ 𝔽k

A (x
w) ⊙ B (x

w) = C (x
w)

Hadamard product in 𝔽m

Typically  are matrices  
with at most  non-zero entries

A, B, C
O(M)

Modern SNARK design often focuses on richer relations 
such as Plonk, CCS, GR1CS, PESAT, AIR, ecc 

The richer relation allows modeling complex circuits with 
smaller constraints, overall speeding the system


