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An entirely too short primer
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Preliminaries




SNARKSs

Succinct Non-interactive Arguments of Knowledge

Wan-t tO ShOW uknowledgeu Of W S.t (i, x, W) = % e.g. Z = {(C,x,w): C(w) = x}

Today: we focus on

SNARKSs from functional
commitments

Almost all practical SNARKSs follow this recipe
Security will be ultimately in idealized models




Interactive succinct arguments
A stepping stone to SNARGs

|

0/1

If number of rounds is superconstant
regular soundness/knowledge
soundness are not sufficient

IJARG has state-restoration soundness/knowledge soundness
— ARG is sound/knowledge sound in the ROM with K rg < Kgr




How to build succinct interactive arguments?

Some approaches... Proof string Query class Answer
PCP+VC ¢ _ _ | B
IOP+VC I1 e X point queries onmt p =Il[a] for a € [7]
LPCP+LC 1eF linear queries Q. D= Zie[f] [1[i] - a[i] for a =4
evaluation queries on — 01 . o= f
<D . ] IR OoFra € I
PIOP+PC II € FHX]|= polynomials on|y p Zze[f] L]

. . wen, €valuation queries on — h a), -, f () - gla
PIOP*+PC I € ([F[X]SD) T structured ponSon|y>x< b Zke[”] k(fl( ) In@)) gk( )

— (][1, ...,fm,gla 9gn)

and more: Bulletproofs (and other sumcheck-based arguments), linear-only encodings [BCIOP13, GGPR13, Groth16], ...
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How to build succinct interactive arguments?

Proof string Query class Answer
FIOP+FC IMex’ Q p=adl) €Dfora e Q
Functional IOP is purely an Functional Commitments
: . : : + ROM
information theoretical construction. are where cryptography goes

Non-interactive arguments in:
ROM + Crypto[FC]
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FIOP + FC

-

FIOP for & A
1
T
I, a <= Q
—~ . 2
< Y1 = 051(1_[1)
Yy .= az(nz)
Y,

IARG for &%

o, := FCommit(1l,)

<

o, := FCommit(11,)

ﬂ 4
d1, Ay

Prover sends proof strings >

Verifier can ask functional queries a € Q

where a: 3¢ — D

<

a; < Q

v, = oq(11,), a,(11
AAERY) oy (11;), ay(11,)  a, < Q

FCEval(I1;, ay, y;)

FCEval(Il,, o, y,)




Concrete security

Let & be a scheme which takes a security parameter A
Typically, theoretical cryptography cares about asymptotic security

Holds for every 4 > 4, which will depend on

Vd = POl)’ (/’t)a Pr [ <Q[ breaks CS) (/1) ] S Il@gl(/l) If A is toihleafgdev ?\Z)S:r:aﬁs;ﬁirecse?r; practice

For practical deployment, we want concrete security

Vﬂ E AdV(R), Pr I:gQ[ brea kS CS)(A,)] S 6(2,, R) Let PCP be a PCP for a relation R with knowledge soundness error kpcp (see Def-

inition 19.1.8). For every security parameter A € N and privacy parameter s € N,
NARG := Micali[PCP, )\, s] in Construction 21.1.1 is a non-interactive argument for R
with knowledge soundness error kagpg (see Definition 7.1.5) such that

For every adversary with some Modelling the resources R of the
resources adversary allows to choose A to get Rana(X 1y n) < (1) - froe(n) + R (X8 1141, 1)
meaningful guarantees Above Ky, is the Merkle commitment multi-extraction error from Lemma 18.5.6, and

Ko\t Lt +1,1) <25 if6-1- (logl +1) < t.

Many additional considerations in this:
extractor running time, average vs worst case security



Lattice based? They seem to be

Metrics that we care about | e e e e

Having fixed A to achieve the required security guarantees, We usually aim for 4 = 128
we generally care about the following three metrics:

Argument size Prover time Verifier time

Relevant to minimize Relevant to reduce the cost of deploying arguments
bandwidth

Hash based arguments (for instances of size 226):
Argument string contains 160KiB

argument size < 1 KiB proof generates in ~1s on a laptop

can be verified in ~600us

Elliptic curve based arguments:

PIOP+PC paradigm |IOP+VC paradigm




Secu rity prO perties This error is not used in practice!

The recipe yields (in general) a secure interactive

[CG KY25] arguments.

In practice tighter bounds are obtained by
analyzing the resulting SNARK

ARG = Funky[FIOP, FC] for a query class ()

FIOP is state-restoration (knowledge) sound
+ FC is state-restoration function binding

= ARG = Funky[FIOP, FC] is state-restoration (knowledge) sound
R (k, £,0) < e (k. O) + €X(t-k-N+1g- k) +k-

ARG

State-restoration (knowledge) State-restoration function Depends only Q
soundness of FIOP binding of FC
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https://eprint.iacr.org/2025/902.pdf

Things | will not talk about

Simulation extractability
ZerO knOWIGdge and non-malleability UC-security
X
Most practical deployed systems marc) TS - [
do not guarantee zero-knowledge T
They still brand themselves as zk... l (o, 7%)

Stronger security properties

Recursion

Recursion is extremely practical.

Most concrete SNARKs use one or more layers of
recursion.

Accumulation and folding schemes new exciting
directions to exploit recursion.

Deployed systems only heuristically secure, problematic
(especially in light of [KRS25])



Minimizing
argument size




PIOP + PC

PIOP+PC

Proof

A\

string

fel

~=<D[x]

Query class

point queries Q

13

point

Answer

B = Zie[f] [1[i] - o' fora €




Also, very good batching properties! Can batch
1 many openings of distinct polynomials
Proof size and verification speed are

Univariate PCS with O(1) proof size constant number of group elements

and operations

Assume bilinear pairings ¢: G X G — G;  other types of pairings Concretely two curves are used:

aretypically usee On BN254 ( ~ 100 bits of security)
Setup(d) . |o;| + |6, | = 64B
Prove(pk, z, y, f(X))
Choose G s.t. G = (g) .
Sample @ « F Compute H(X) = L2 Y On BLS12-381 ( ~ 128 bits of security)
Output: : X—2z — 06
pk =(g.8% ..., gad_l) Output 0, = gw(“) ‘ Gf‘ T ‘ Oy ‘ = 968B Of the curve, not of KZG!
vk = (g,8%)
: A : Relies on a private-coin setup.
COmmlt(pk, f(X)) VerlfY(Vka Gfa <5 Y, GW)

If ¢ Is public there is no security

Output o = g/' Check e(oy, g) = e(0,,,8" ) - e(g, 8) Security proven in AGM
or under SDH-type assumptions
Can be computed with an MSM from pk



Univariate sumcheck [BCRSVW19]

Let H C [F be a multiplicative subgroup and Ietf e FYX]:

35 € F9- X

A - fX) = 8(X) - V(X)) + h(X)
Jh e FIX]

Z f(a) = y if and only if

aceH

Lincheck PIOP:

Show that Vi € H : (M - )(i) = 8(i)
| Used extensively in PIOP such as Aurora, Marlin, Fractal, Plonk, fflonk,
| Turboplonk, Ultraplonk, Honk, ...

r < [

ﬂ ﬁ "
q

(2) - 8(x) — MT - M) - f2) = p(2) - V(@) + 2 - §(2)

[ Putting it all together j

Argument string is a (small) constant number of group elements

Example:

Marlin PIOP with KZG on BL12-381 is 880B




Ceremonies

$ KZG
v Ceremony

Follow a 1-out-N security model

Logistically quite hard to setup but can be done

@ English v

. KZG (and derived arguments) have universal setup:

Once done, the same pk, vk can be used for

SUMMONING GUIDES

The ceremony is over

Transcript sha256 hash:

Ox8ed1c73857e77ae98ea23e36cdcf828ccbf32b423fddc7480de658f9d1
16¢c848

Total contributions:
141,416

Whispers from the shadows tell of a powerful spirit Dankshard, who will
open the next chapter of Ethereum scalability. Contributors have come
together to summon its power.Whispers from the shadows tell of a
powerful spirit Dankshard, who will open the next chapter of Ethereum
scalability. Contributors have come together to summon its power.

<Verify transcript>

A many different circuits being proven

(T [ Open Qs j

Concretely efficient argument/polynomial
commitment without private coin setup and
argument size < 5 KiB
W Concretely efficient argument/polynomial

commitment with post-quantum security and
argument size < 20 KiB



Even smaller proof sizes

Does not follow our recipe, but a similar one based on linear-PCPs

Jens Groth**

University College London, UK
j.groth@ucl.ac.uk

On the Size of Pairing-based Non-interactive Arguments*

Polymath: Grothl16 Is Not The Limit*
June 8, 2024

Helger Lipmaa

Over BLS12-381: 176 B

GARUDA and PARI: Faster and Smaller SNARKS
via Equifficient Polynomial Commitments

Michel Dellepere Pratyush Mishra Alireza Shirzad

michel@provable.com prat@upenn.edu alrshir@upenn.edu
Provable UPenn UPenn

Over BLS12-381: 160 B

Groth16: Most widely deployed succinct argument

Secure in the AGM, argument string is 3 - G.
Over BLS12-381 this is 192 B.

Recent improvement:

Achieve smaller proof sizes using a
combination of AGM + ROM

[ Open Qs J

Stronger private coin setup requirements:
the setup must be done once per circuit

Can we get even smaller SNARKs?

Get argument of comparable size with universal setup



Minimizing
prover & verifier cost



IOP + VC

Proof string Query class Answer

IOP+VC [M1eX point queries Qpint f =Ia] fora € [£]

[ Open Qs J
Something quite magical happens here:
Merkle trees are non-interactive vector commitments Are Merkle tree optimal as VC in the ROM?
in the pure ROM:

More concretely efficient post-quantum vector
Can construct succinct arguments in the pure ROM commitment schemes

Simple cryptography, work shifted to the IOP
19



Hash-based SNARKs

In practice

Committing to 2°° field elements on a

Instantiating random oracle gives amazing SNARKSs: laptop can be done in &~ 5s00ms

» Transparent setup (choice of hash) Committing to 220 field elements using
an MSM is on the order of ~ 3m

* Highly efficient implementations (no public-key crypto)

Not an entirely fair comparison, but gives

* Plausibly post-quantum secure (secure in QROM) some intuition

Used to secure billions of dollars in real-world blockchains:

€» STARKWARE Ilrreducible
Co polygon

4 zkSync | dYd/
BT > Succinct

N7\ Matte
/'V'\ ' l ZERO

And many more...

20


https://zka.lc/

IOP-based SNARKSs

IBCS16] Construction

BCS construction:

I_’ Merkle Trees + FS
I~ . *
|_>

Proof length | ~ O(n)
Queries q ~ O(log n)

Argument size O(A - q - log 1)

Small, tens of KiB



Linear codes %: F* - [, (V) =Gy -V

Injective .
J Generator matrix

(LT T 1111 = L[ILITTTTTTTTTTT]

Message Redundancy

Parameters of interest

J
» w Hamming distance [ It’s all about the code ]
Translates to verifier efficiency

- . . _ . : /
Minimum distance: 0 := min A(u, u’) Error correcting codes will be used to redundantly encode

JU'EEG . . :
o witnesses of NP relation, and then prove claims about them.
k . .
Rate: p = — and encoding time: encg | Mo_dern _IOP .(a.nd accumulation schemes) _almost entirely
n Inherit their efficiency property from the choice of code used
Translates to prover ro queries. — Translates to prover time

Usually O(1)

22



Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

Reed-Solomon Proximity Test on virtual function:

Flx) = Jx) —y

X—Z

. J

The efficiency of the IOP
is almost entirely determined by
23 the proximity test




|JOP of Proximity to RS codes Convenience

Evaluations of polynomials of degre2em< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the

code Completeness

If f € RS[n, m, p] then V accepts

IOPP for RS
Fiio
m . If A(f,RS[n,m, p]) > 0 then w.h.p. V rejects
V

« Goal: minimize queries to f and other
_D]]]:l_' proof oracles.

24




Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding
Can the proximity test directly

f(x) —y Reed—Solomon enforce the constraint?
Quotient f'(x) :=

X—7Z proximity test for |’

Yes! |IOPP for constrained codes

25



Constrained codes

Idea: enrich proximity tests by enforcing constraints on the messages encoded by the word being tested.

GLP,f.,n) = {f€ G : P(B,E\(f) =n)

Constraint and Value of constraint
parameters Note:

A(f, GI[P, 5,n]) > 6 means that:
For every u € A(G, f,5), the message w := €~ (u)
We will be interested in one particular type of constraints does not satisfy the constraint 13(,6, W) =n

Sumcheck constraints

Very powerful! If V(b) = eq(b, z) this
G|V, ,7] — fE 2 Z f(b) : f;(b) =7 captures evaluation claims

be{0,11" of multilinear polynomials atz € [

26



[ Open Qs j

Is there a constant round sumcheck
protocol with linear prover time?

Multilinear sumcheck

[LFNK92] A
D ¥b)- fib) =7

be{0,1}"
Compute: lAl
A A A 1 Check that:
X)) =) HX.b)-fX,b) : ~neck s
be{0,1}""! 4 ay h(0) + hi(1) =n
h(X)= ) ¥a.X.b)- fla,X,b) ﬂ : hy(0) + hy(1) = W),
be{0,1}7"2 }Al
m , fa) - v(a) = h,(a,,)
am
This makes sense when argument size is not a bottleneck
Extremely powerful!
Only requires m rounds Recent trend in succinct arguments is to use
Prover can be implemented in O(2™) field operations multilinear PIOPs instead of univariate
Verifier runs in time O(m + | f| + | 9|) because of multilinear sumcheck




f:L—TF
WHIR Y EEEEREEN

A 1000 1t view ﬂ— al , ap, ..., <

,._ Interleaving of RS folding (FRI) with
FOId(f, 0(1, coeq ak) Pl multilinear sumchecks
g 4|:|:|:|:|:|:|_> BaseFold, Gemini, ...
Domain shift, efficient technique to
OOD reduce query complexity by better
r exploiting the problem size
‘ ina dur :
OOD samples: powerful technique decreasing during recursion
to work in the list-decoding regime lB
—_—
— Lo 0=k
Domain shift Recursing: sequence of rates p; := 2 p.
S A
FOF gRBR S 2_/15 Set tl = 1 \/— Fe:\éirnecla'Ch
 —
—1084/Pi '
Batchin
9 k=4,1=100 1 =0 =1 [ =2

Recurse g € CRS %,m—k, Pi 1/2 1/16 1/128

l; 200 50 29




Comparison with prior work

Queries Verifier Time Alphabet
BaseFold q.. = O(A - m) 0(@q..) F2
A . i
FRI Arr1 = 0 ; L O(QFRI - 2"%) F
A ky 12 nk 2k
STIR g = O P log m O(Gsrs * 25+ A7 - 27) F
& O 2k 2t
WHIR G = O i logm (Guie = (27 +m)) F
When k =~ logm When k =~ logm When k ~ log m
qwhir = O(4) O(qwhir - | Z1]) X =[F"
Improving is an
OPTIMAL OPTIMAL open question




Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

* Other verifiers require several MILLI-seconds (and more).

 While maintaining state-of-the-art prover time & argument size

Trusted setup

Transparent setup

Pairing-based Hash-based
Ver";i‘:rs)“me Brakedown | Ligero | Greyhound | Hyrax PST KZG WHIR[1/2] | WHIR[1/16]
A =100 3500 733 - 100 7.81 2.42 0.61 0.29
A =128 3680 750 130 151 9.92 3.66 1.4 0.6

30

WHIR][p] denotes
WHIR with rate p



Comparison with FRI and STIR

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

Size (KiB) 177 110
Verifier time 2.4ms /00ps
“ater2 | WHIR

Size (KiB) 494 187
Verifier time 4.4ms 1.3ms

Argument size

| | | | | | |
218 220 222 224 226 228 230

Degree

Prover time

LN I I I I I I
218 220 222 224 226 228 230

Degree

Hashes

Note: prover time graph is now outdated
due to new optimizations discovered

Rate of the code p = 1/2

Verifier hash complexity

10000 -+
3000 -

6000 -

4000 -

| | | | | | |
218 220 222 224 226 228 230

Degree

Verifier time

1] ok

LN I I I I I I
218 220 222 224 226 228 230

Degree

3 FRI, STIR, WHIR



Security analysis relies on
properties of random
combinations of linear error
correcting codes

Mutual correlated agreement

if w.h.p. A(f*,€) < 0:

r < " Agreement: then A(f,, €) < 0.

Correlated agreement: then f,, ..., f,.
agree with € on the same “stripe”

Mutual correlated agreement: the stripe
in which fi, ..., f,, agree with & is the

. ..
h Im J* = Z i same on which f* does:

l
[ Huge Open Q j “No new correlated domains appear”

Correlated agreement for RS codes up
to distance 6 > 1 — \/,5 32



Folding and lists commute MOS0 o e ot o

codewords of € that are o-close

Implied by mutual correlated agreement to f
)
[ Lemma J
w.h.p. over r:
Jvootmt L= B A m L 5) A, (£,1),8) = {(u,r) : u € A(B"1,5))
|
\
[ Lemma J

< " I’) < B l‘) l w.h.p. over r;
A(®, Fold(f, @), 5) = {Fold(u, @) : u € A(€,f,5)}

A(E, - ,0)

Recent results show that mutual correlated agreement
holds up to 1.5 Johnson for general linear codes!

Stronger than what is required | |
for FRI/STIR’s soundness We show correlated agreement implies mutual

correlated agreement in unique decoding.
33



Conclusion



Open questions

In this talk

[ Open Qs ]

Are Merkle tree optimal as VC in the ROM?

More concretely efficient post-quantum vector
commitment schemes

[ Open Qs )

Concretely efficient argument/polynomial
commitment without private coin setup and

argument size < 5 KiB

Concretely efficient argument/polynomial
commitment with post-quantum security and

argument size < 20 KiB

[ Open Qs J

Can we get even smaller SNARKs?

Get argument of comparable size with universal setup

[ Open Qs j

Is there a constant round sumcheck
protocol with linear prover time?

[ Open Qs ]

|IOPP with optimal query complexity and
verifier time in the constant alphabet regime.

[ Huge Open Q j

Correlated agreement for RS codes up
to distance 6 > 1 — \/,5




Open questions

Other things that are super interesting

( Open Qs j

Lattice-based polynomial commitments/arguments with:

polylogarithmic verification & argument size < 50 KiB

[ Open Qs )

Linear time accumulation schemes with constant
round complexity

[ Open Qs J

UC-security for recursive proof composition (in
GROM or AROM)

[ Open Qs J

Concretely efficient constructions of relativizing
arguments in the AROM or similar idealized models.

( Open Qs ]

Is there an analogue of parallel repetition that
amplifies state-restoration soundness?

[ Open Qs J

Linear time accumulation schemes
over small fields




Lots of schemes!

Awh Arc Aurora BaseFold
Binius  |Brakedown|Bulletproofs| CycleFold ChatGPT generated, so most likely not
Dory DEEP-FRI FRI Fractal complete
Geppetto Gemini Groth16 | Greyhound
Halo Halo2 HyperNova |HyperPlonk
Hyrax Jolt Kilonova KZG ) Accumulation scheme
_asso LatticeFold Libra Ligero . Polynomial commitment scheme
Lova Mangrove Marlin MIRAGE  Interactive oracle proof of proximity
Mova Nova Origami Orion ’ Memory argument/lookup
Pickles | Pinocchio | Plonk | Plonky2 ' Full SNARK
ProtoGalaxy | ProtoStar | Reverie Sangria
Shout SLAP Sonic Spartan
SPARKs Spice STARK STIR

| . Thanks for listening!
SuperNova |Supersonic|TinySpartan|  Twist

Twinkle Virgo WARP WHIR




Extra slides




PIOP + PCS Plenty of choices

The modular way™ ava"ablg:pgl;tfrﬁ’. e We focus on this!
g PIOP h g PCS
fe FX]

E ‘ ‘ commi}t f

\_ J \_

fix)y=y, forx,yelF

® Oracles are polynomials
® Security is information-theoretical

e Proof length is €2(n) (not succinct)
e Verifiers are very efficient

e Cryptography goes here!
e Computational security
® We can achieve succinctness
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Compilers

SNARK in ROM

~

i
==
T >

~ R
PIOP
B
gp NS
|OPP for RS[F, d, L]

0/1

Merkle trees + Fiat-Shamir

fmMT
MTCommit
AT Js

g y

( )
PIOPP for RS[F, d, L]

I
ﬂj{: [

PIOPP for RS[F, d/k, L]

~

I
_I
<
PR
<
\

y,
(Aurora)
(Spartanj
r )
>-10P
Q..

|OPP for RS[F, d/k, L]

|OPP for CRS[F, d, L]

I
_I
<
PR
<
\

I |
T
<
@B
<
\ J

(" N
2-IOPP for CRS[F, d, L]

B —

|

1>

-
_J

IOPP for CRS[F, d/k, L]

I |
T
<
@B
<
\ J

\_

IOPP for RS[F, d/k?, L]

_J

( PIOPP for RS[F, d/k?, L,] w

L IOPP for RS[F, d/k>, L,] J

IOPP

)

(10PP for RSIF, O(1), L1 )

( IOPP for CRSI[F, O(1), L,,] )

>-|OPP

(o

( 5>-10PP for CRS[F, d/k?, Lﬂ

L IOPP for CRS[F, d/k, L,] J

-

2-IOPP for CRS[F, d/k, L]

~

\_

IOPP for CRSIF, d/k?, L,]

J




Accumulation



Incrementally Verifiable Computation (IVC)

. »Y A = - _ E.g. signature aggregation:
To prove x; = F"(xy), prove dx,...,x;_;suchthat Vi € [T],x; = F(x,_). F((@. pky. b) = b, A SigVy(st. pk. o)

X3
Vive(x_q, X;, ;) checks
that z; attests the
whole computation!
73
Py costs

IVC can be generalized to Proof-Carrying-Data (PCD). independent from /
PCD considers a directed acyclic graph instead of a line.
PCD in practice is preferable to IVC, as it enables reducing the prover's latency. Wonderful! How

do | get IVC?

42



(*) more complex than this,
needs preprocessing

IVC from SNARKS

Recursive proof composition

PA RG | VA RG

Prove that /'(x,_;) = x; and Check 7; is a valid proof
V ArG accepts 7;_,

PQ SNARK _ 7
—> PQIVC | 7| independent from Cost of Pryc = | F| + | Vargl
Concretely: |V ,zc | ~ 2?° constraints
e L Memory costs l.e. recursive overhead is quite large
Cheap verification independent from T , Good starting point, but can be improved!




Any ARG yields ACC with

Accumulation Schemes Ve | 2 |V om0,

A ||ghtwe|ght tool for batching We can do (significantly) better!

Enables batching many checks (x;, w;) €, &£ into an accumulator acc.
V Acc Verifies that adding the inputs into acc was done correctly

D, decides whether acc is valid.

(xla Wl)a KR (xfla Wfl)

aCccC I
These might have accumulated
many instance-witness pairs
accCy, ..., acCCyp, pf
vield]: x,w)e A
Then w.h.p:

Thistalk: £ := £, + ¢, Vj € [£,] 1 Dpcclacc) =1

44



IVC from accumulation

PACC

Prove that F(x;,_,) = x; and

V scc verified acc;_; was
correctly accumulated

PQ Accumulation
—> PQIVC

| 7 | independent from T

Memory costs
independent from T°

< [ Varg|
Cost of Py =~ | F| + | Vaccel

45

(*) actually we need a more refined notion:
"split" accumulation schemes

Vacclx;_, acc;_y, acc;, pt)

Not succinct

Costof Viye ® | Vacel + | Dace

Wrap with a final SNARK
—> succinct verification




One more thing...

Accumulation schemes are broadly useful for integrity in distributed systems with repeated computations.

Digital provenance

VIMz: Private Proofs of Image Manipulation
using Folding-based zkSNARKs*

Shahriar Ebrahimi

And more...

Parisa Hassanizadeh

Stefan Dziembowski

Verifiable Virtual Machines (VVMs)

Reef: Fast Succinct Non-Interactive Zero-Knowledge Regex Proofs

Sebastian Angel*  Eleftherios Ioannidis*  Elizabeth Margolin*  Srinath Setty’  Jess Woods*
*University of Pennsylvania  TMicrosoft Research

G RISC

Z E R 0 Eva: Efficient Privacy-Preserving Proof of .. . .
Authenticity for Lossily Encoded Videos ALPACA: Anonymous Blocklisting with Constant-Sized Updatable Proofs
’ Chengru Zhang!, Xiao Yang?, David Oswald?, Mark Ryan?, and Philipp Jovanovic? Jiwon Kim

@ OpenVM Consensus

Abhiram Kothapalli
University of California, Berkeley

Orestis Chardouvelis
Carnegie Mellon University

Paul Grubbs
University of Michigan

NEXUS

Breaking the O(4/n)-Bit Barrier:
Byzantine Agreement with Polylog Bits Per Party

Mangrove: A Scalable Framework for Folding-based SNARKSs

+ At least 25 more...

Wilson Nguyen Trisha Datta Binyi Chen Nirvan Tyagi Dan Boneh

Elette Boyle* Ran Cohen' Aarushi Goel*

Accumulation schemes:

Group-based

Nova, Supernova, Hypernova,

Protostar, Protogalaxy, NeutronNova,

KZHFold, ...

Must use 256-bit fields, accumulation
time super-linear, cycles of curves
required for recursion, not pq

Lattice-based

46

Very promising,

accumulation costs super-

linear, plausibly pq
some field flexibility

Latticefold, Lova, Latticefold+, Neo

Hash-based
Awh, ARC, WARP

Accumulation costs can be lineatr,
plausibly pq, full field flexibility


https://x.com/eth_proofs/status/1918926204834320684

NP-relation of choice

1= (A,B,C,M,N, k)

_ X E [:N—k
%R1CS([_) — (l, X, W) : w e [:k

A(2)on()=c ()

Hadamard product in "

Modern SNARK design often focuses on richer relations

Typically A, B, C are matrices such as Plonk, CCS, GR1CS, PESAT, AIR, ecc

with at most O(M) non-zero entries

The richer relation allows modeling complex circuits with
smaller constraints, overall speeding the system




